سایت رشته صنایع شیمیایی

ساخت وبلاگ

این نرم افزار 25 نوار ابزار جدید به Word اضافه می کند که با استفاده از آن ها می توانید انواع و اقسام شکل ها، ابزارها، فرمول ها و علائم مورد استفاده در علوم مختلف مانند شیمی، فیزیک و ریاضی را تنها با یک کلیک متن خود اضافه کنید.

Science 62

 برای دانلود به ادامه مطلب مراجعه نمایید.


:: روش نصب و استفاده ::

قبل از نصب نرم افزار Scienc62 ابتدا باید اجازه استفاده از Macro ها را به Word بدهید. برای این کار در محیط Word از منوی Tools وارد مسیر Tools>Macro>Security شده و گزینه Medium را انتخاب کرده و تایید کنید. سپس به طور کامل از Word خارج شوید و سپس نصب Scienc62 را شروع کنید.

برای نصب Scienc62 فایل Scienc62_Installation.exe را اجرا کرده و  به ترتیب گزینه های زیر را انتخاب کنید:

No-Question-Asked Installation>Yes, I do>Thanks!>I agree>Install Scidot ...>Next>Next>Finish>OK>Install>OK>OK

بعد از نصب نرم افزار وارد Word شده و  در صورت دادن پیغام، گزینه Enable Macros را انتخاب کنید. در ابتدای نوار ابزار Standard روی دکمه S62 کلیک کنید. با کلیک روی این دکمه چند نوار ابزار و یک منوی جدید به محیط Word اضافه می شود. برای ظاهر نمودن سایر نوار ابزارها، آن ها را از منوی Science62 انتخاب کنید.  

برای ثبت نرم افزار و از بین بردن محدودیت 15 روزه آن، از منوی Scienc62 گزینه Register را انتخاب کنید. در وسط پنجره ظاهر شده یک کد 5 رقمی مشاهده می شود. فایل Keygen.exe را ز پوشه نصب نرم افزار اجرا کنید و این کد 5 رقمی را در قسمت First 5 digits... وارد کنید و سپس روی Generate کلیک کنید. حال کد ایجاد شده در قسمت Activation key is را در قسمت CODE پنجره Registration وارد کنید. قسمت NAME را نیز به دلخواه قرار دهید و روی OK کلیک کنید.

 

Imageحجم نرم افزار:Size: 4.06 MB

 Imageپسورد فایل: miadsoft.blogfa.com

 

 

Imageلینک دانلود : دانلود Crack

Imageحجم نرم افزار:Size: 231 KB

Imageپسورد فایل: miadsoft.blogfa.com

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 427 تاريخ : سه شنبه 26 آذر 1387 ساعت: 4:0

این هم نسخه جدید نرم افزار قبلی با کلی امکانات اضافه که مطمئنا شما را شگفت زده خواهد کرد. همان طور که قبلا نیز اشاره شده بود، این نرم افزار تعداد زیادی نوار ابزار جدید به Word اضافه می کند که با استفاده از آن ها می توانید انواع و اقسام شکل ها، ابزارها، فرمول ها و علائم مورد استفاده در علوم مختلف مانند شیمی، فیزیک و ریاضی را تنها با یک کلیک به متن خود اضافه کنید.

از جمله امکانات جدید این نرم افزار در مورد شیمی نسبت به نسخه قبلی می توان امکان درج شکل ابزارها به صورت سه بعدی و درج نشانه شیمیایی عناصر با عدد اتمی و عدد جرمی و .... را نام برد. هم چنین سازگاری با Office 2007 نیز یکی از برتری های این نسخه نسبت به نسخه قبلی است. در زیر برخی شکل های رسم شده با این نرم افزار را مشاهده می کنید:

شکل وسایل شیمی

برای دانلود به ادامه مطلب مراجعه نمایید. 


:: روش نصب و استفاده در Word 2003::

قبل از نصب نرم افزار Scienc64 ابتدا باید اجازه استفاده از Macro ها را به Word بدهید. برای این کار در محیط Word 2003 از منوی Tools وارد مسیر Tools>Macro>Security شده و گزینه Medium را انتخاب کرده و تایید کنید. سپس به طور کامل از Word خارج شوید و سپس نصب Scienc64 را شروع کنید.

برای نصب Scienc64 فایل installS64GD8.exe را اجرا کرده و  به ترتیب گزینه های زیر را انتخاب کنید:

Install>I agree>خانه ها را خالی بگذارید>Activate>Close

بعد از نصب نرم افزار، وارد Word شده و در صورت دادن پیغام، با انتخاب Always trust macros ... روی Enable Macros کلیک کنید. حال اگر به قسمت نوار ابزارهای Word نگاه کنید، یک نوار ابزار کوچک مثل شکل زیر اضافه شده است:

S64 Toolbar

با کلیک روی دکمه s64 چند نوار ابزار و یک منوی جدید به محیط Word اضافه می شود. از منوی Scienc64 برای ظاهر نمودن نوار ابزارهای اختصاصی شیمی، فرمول نویسی، فلش ها، الکتریسیته، مکانیک، نور، صوت، ریاضی و ... استفاده کنید:

S64-Chem 

برای فعال سازی نرم افزار و از بین بردن محدودیت 15 روزه آن، از منوی Scienc64 گزینه Activation/Licence را انتخاب کنید. در گوشه بالای سمت راست پنجره ظاهر شده یک کد 10 رقمی به نام Windows serial مشاهده می شود. فایل Keygen Scienc64.exe را از پوشه نصب نرم افزار اجرا کنید و این کد 10 رقمی را (بدون خط تیره) در قسمت Code Windows وارد کنید و سپس روی Calculer کلیک کنید. حال کد ایجاد شده در قسمت Code de Débridage را در قسمت Registration Code پنجره Activation وارد کنید. قسمت Name/Email را نیز به دلخواه قرار دهید و روی Activate کلیک کنید. آن گاه روی OK و سپس Close کلیک کنید.

فعا سازی S64 

 

Imageحجم نرم افزار:Size: 33.4 MB

 Imageپسورد فایل: miadsoft.blogfa.com

 

 

Imageلینک دانلود : دانلود Crack

Imageحجم نرم افزار:Size: 77 KB

Imageپسورد فایل: miadsoft.blogfa.com

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 358 تاريخ : سه شنبه 26 آذر 1387 ساعت: 3:59

این فونت شامل تعدادی از علائم مورد استفاده در شیمی می باشد که به عنوان نمونه می توان فلش دوطرفه برای نوشتن واکنش های تعادلی، اوربیتال های مورد استفاده در رسم آرایش الکترونی و ... را نام برد.

Chemistry Font فونت شیمی

برای دانلود به ادامه مطلب مراجعه نمایید.


Imageنکته:

 :: روش نصب و استفاده ::

برای نصب فونت کافیست آن را کپی کرده و سپس پوشه Fonts موجود در Control Panel را باز نموده و در این پوشه Paste کنید.

برای استفاده علائم این فونت در Word دستور Insert>Symbol را اجرا نموده و فونت Chemistry را از قسمت Font انتخاب کنید و پس از انتخاب علامت مورد نظر روی Insert کلیک کنید.

Chemistry Font فونت شیمی 

Imageلینک دانلود : دانلود فونت

Imageحجم نرم افزار:Size: 37 KB

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 354 تاريخ : سه شنبه 26 آذر 1387 ساعت: 3:58

نرم افزار FxChem نرم افزاری است بسیار مفید که می تواند بخش اعظمی از مشکلات شما را در تایپ معادلات شیمیایی در Word حل کند

FXChem

برای دانلود به ادامه مطلب مراجعه نمایید.


نرم افزار FxChem نرم افزاری است بسیار مفید که می تواند بخش اعظمی از مشکلات شما را در تایپ معادلات شیمیایی در Word حل کند:

 

FXChem

 

:: روش نصب ::

با اجرای فایل fxc200.exe نرم افزار را با توجه به نکات زیر نصب کنید:

1- در مراحل نصب قسمت های Registration Name و Unlock Code را خالی بگذارید و روی Next کلیک کنید.

FXChem 

2- در یکی از مراحل نصب باید نسخه ای از Word را که روی سیستم شما نصب است، انتخاب کنید تا این نرم افزار روی Word فعال شود.

FXChem

 

3- برای کرک کردن نرم افزار، فایل fx.chem.2.104.0_Crk.exe را از پوشه Crack کپی کرده و در محل نصب نرم افزار یعنی مسیر زیر Paste کنید:

C:Program FilesEfofexFXC 

 آن گاه این فایل را اجرا کرده و روی دکمه Crack کلیک کنید.

  

:: روش استفاده در Word ::

در Word 2003 پس از نصب نرم افزار یک نوار ابزار جدید به Word اضافه می شود که شامل دو آیکون می باشد. در Word 2007 نیز این آیکون ها به ریبون Add-Ins اضافه می شود.

با کلیک روی آیکونی که در شکل زیر نشان داده شده است، نرم افزار FxChem در محیط Word فعال شده و آماده استفاده می شود. (می توانید از میان بر Ctrl+Shift+C هم استفاده کنید.)

FXChem 

  

مانند شکل زیر فرمول را در کادر مربوط به نرم افزار FxChem تایپ کنید تا خود نرم افزار آن را قالب بندی کرده و در محیط Word قرار دهد.

FXChem 

برای خارج شدن از محیط FxChem ، در محیط Word روی قسمتی خارج از فرمول تایپ شده کلیک کنید.
برای تغییر فرمولی که قبلا تایپ شده روی آن دابل کلیک کنید و تغییرات لازم را انجام دهید.

 

  

Imageحجم نرم افزار:Size: 1.33 MB

Imageپسورد فایل: miadsoft.blogfa.com

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 377 تاريخ : سه شنبه 26 آذر 1387 ساعت: 3:56

زنی سه دختر داشت که هر سه ازدواج کرده بودند.

يکروز تصميم گرفت ميزان علاقه ای که دامادهايش به او دارند را ارزيابی کند.

يکی از دامادها را به خانه اش دعوت کرد و در حالی که در کنار استخر قدم ميزدند از قصد وانمود کرد که پايش ليز خورده و خود را درون استخر انداخت.

دامادش فوراً شيرجه رفت توی آب و او را نجات داد.

فردا صبح يک ماشين پژو ٢٠٦ نو جلوی پارکينگ خانه داماد بود و روی شيشه اش نوشته بود: «متشکرم! از طرف مادر زنت»

زن همين کار را با داماد دومش هم کرد و اين بار هم داماد فوراً شيرجه رفت توی آب و جان زن را نجات داد.

داماد دوم هم فردای آن روز يک ماشين پژو ٢٠٦ نو هديه گرفت که روی شيشه اش نوشته بود: «متشکرم! از طرف مادر زنت»

نوبت به داماد آخری رسيد.

زن باز هم همان صحنه را تکرار کرد و خود را به داخل استخر انداخت.

اما داماد از جايش تکان نخورد.

او پيش خود فکر کرد وقتش رسيده که اين پيرزن از دنيا برود پس چرا من خودم را به خطر بياندازم؟

همين طور ايستاد تا مادر زنش در آب غرق شد و مرد.

فردا صبح يک ماشين بی ام ‌و آخرين مدل جلوی پارکينگ خانه داماد سوم بود که روی شيشه اش نوشته بود: «متشکرم! از طرف پدر زنت»

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 319 تاريخ : سه شنبه 26 آذر 1387 ساعت: 3:50

Uric acid

File:Uric acid.png 

 


Uric acid (or urate) is an organic compound of carbon, nitrogen, oxygen and hydrogen with the formula C5H4N4O3.

Metabolic processes

Uric acid is a breakdown product of DNA & RNA, converted by xanthine oxidase from xanthine and hypoxanthine, which are in tu purine breakdown products. Uric acid is more toxic to tissues than either xanthine or hypoxanthine.

Xanthine oxidase oxidizes oxypurines such as xanthine and hypoxanthine to uric acid. In humans and higher primates, uric acid is the final oxidation product of purine catabolism. In most other mammals, the enzyme uricase further oxidizes uric acid to allantoin.[2] The loss of uricase in higher primates parallels the similar loss of the ability to synthesize ascorbic acid.[3] Both urate and ascorbate are strong reducing agents (electron donors) and potent antioxidants. In humans, over half the antioxidant capacity of plasma comes from uric acid.

Uric acid is also the end product of nitrogen catabolism in birds and reptiles. In such species, it is excreted in feces as a dry mass. While this compound is produced through a complex and energetically costly metabolic pathway (in comparison to other nitrogenated wastes such as urea or ammonia), its elimination minimizes water loss. It is therefore commonly found in the excretions of animals—such as the kangaroo rat—that live in very dry environments. The Dalmatian dog has a defect in uric acid uptake by liver, resulting in decreased conversion to allantoin, so this breed excretes uric acid, and not allantoin, in the urine.

[edit] Medical issues

Humans produce large quantities of uric acid. In human blood plasma, the reference range of uric acid is between 3.6 mg/dL (~214µmol/L) and 8.3 mg/dL (~494µmol/L) (1mg/dL=59.48 µmol/L).[4] This range is considered normal by the American Medical Association, although significantly lower levels are common in vegetarians due to a decreased intake of purine-rich meat.[5] Uric acid concentrations in blood plasma above and below the normal range are known, respectively, as hyperuricemia and hypouricemia. Similarly, uric acid concentrations in urine above and below normal are hyperuricosuria and hypouricosuria. Each of these conditions has a variety of causes and consequences.

Reference ranges for blood tests, comparing blood content of uric acid (shown in green) with other constituents.
Shown in molarity rather than mass. Uric acid shown in yellow.

[edit] High uric acid

[edit] Gout

Excess serum accumulation of uric acid can lead to a type of arthritis known as gout.[6]

Elevated serum uric acid (hyperuricemia) can result from high intake of purine-rich foods, high fructose intake (regardless of fructose's low Glycemic Index (GI) value) and/or impaired excretion by the kidneys. Saturation levels of uric acid in blood may result in one form of kidney stones when the urate crystallizes in the kidney. These uric acid stones are radiolucent and so do not appear on an abdominal x-ray. Their presence must be diagnosed by ultrasound for this reason. Some patients with gout eventually get uric kidney stones.

Gout can occur where serum uric acid levels are as low as 6 mg/dL (~357µmol/L), but an individual can have serum values as high as 9.5 mg/dL (~565µmol/L) and not have gout[7] (no abstract available; levels reported at [8]).

[edit] Lesch-Nyhan syndrome

Lesch-Nyhan syndrome, an extremely rare inherited disorder, is also associated with very high serum uric acid levels.[9]

Spasticity, involuntary movement and cognitive retardation as well as manifestations of gout are seen in cases of this syndrome.[10]

[edit] Cardiovascular disease

Although uric acid can act as an antioxidant, excess serum accumulation is often associated with cardiovascular disease. It is not known whether this is causative (e.g., by acting as a prooxidant ) or a protective reaction taking advantage of urate's antioxidant properties. [11]

[edit] Diabetes

The association of high serum uric acid with insulin resistance has been known since the early part of the 20th century, nevertheless, recognition of high serum uric acid as a risk factor for diabetes has been a matter of debate. In fact, hyperuricemia has always been presumed to be a consequence of insulin resistance rather than its precursor [12]. However, it was shown in a prospective follow-up study that high serum uric acid is associated with higher risk of type 2 diabetes independent of obesity, dyslipidemia, and hypertension [13].

[edit] Metabolic syndrome

Hyperuricemia is associated with components of metabolic syndrome and it has been debated for a while to be a component of it. It has been shown in a recent study that fructose-induced hyperuricemia may play a pathogenic role in the metabolic syndrome. This agrees with the increased consumption of fructose-base drinks in recent decades and the epidemic of diabetes and obesity [14].

[edit] Uric Acid Stone Formation

Uric acid stones, which form in the absence of secondary causes such as chronic diarrhea, vigorous exercise, dehydration, and animal protein loading, are felt to be secondary to obesity and insulin resistance seen in metabolic syndrome. Increased dietary acid leads to increased endogenous acid production in the liver and muscles which in tu leads to an increased acid load to the kidneys. This load is handled more poorly because of renal fat infiltration and insulin resistance which are felt to impair ammonia excretion (a buffer). The urine is therefore quite acidic and uric acid becomes insoluble, crystallizes and stones form. In addition, naturally present promoter and inhibitor factors may be affected. This explains the the high prevalence of uric stones and unusually acid urine seen in patients with Type II diabetes. Uric acid crystals can also promote the formation of calcium oxalate stones, acting as "seed crystals" (heterogenous nucleation).[15]

[edit] Low uric acid

[edit] Multiple sclerosis

Lower serum values of uric acid have been associated with Multiple Sclerosis. Multiple sclerosis (MS) patients have been found to have serum levels ~194µmol/L, with patients in relapse averaging ~160µmol/L and patients in remission averaging ~230µmol/L. Serum uric acid in healthy controls was ~290µmol/L.[16] Conversion factor: 1mg/dL=59.48 µmol/L[17]

A 1998 study completed a statistical analysis of 20 million patient records, comparing serum uric acid values in patients with gout and patients with multiple sclerosis. Almost no overlap between the groups was found.[18]

Uric acid has been successfully used in the treatment and prevention of the animal (murine) model of MS. A 2006 study found that elevation of serum uric acid values in multiple sclerosis patients, by oral supplementation with inosine, resulted in lower relapse rates, and no adverse effects.[19]

[edit] Oxidative stress

Uric acid may be a marker of oxidative stress,[20] and may have a potential therapeutic role as an antioxidant.[21] On the other hand, like other strong reducing substances such as ascorbate, uric acid can also act as a prooxidant,[22] particularly at elevated levels. Thus, it is unclear whether elevated levels of uric acid in diseases associated with oxidative stress such as stroke and atherosclerosis are a protective response or a primary cause.[23]

For example, some researchers propose that hyperuricemia-induced oxidative stress is a cause of Metabolic syndrome.[24][25] On the other hand, plasma uric acid levels correlate with longevity in primates and other mammals.[26] This is presumably a function of urate's antioxidant properties.

[edit] Sources of uric acid

  • In many instances, people have elevated uric acid levels for hereditary reasons. Diet may also be a factor.
  • Purines are found in high amounts in animal inteal organ food products, such as liver.[27] A moderate amount of purine is also contained in beef, pork, poultry, fish and seafood, asparagus, cauliflower, spinach, mushrooms, green peas, lentils, dried peas, beans, oatmeal, wheat bran and wheat germ.[28]
  • Examples of high purine sources include: sweetbreads, anchovies, sardines, liver, beef kidneys, brains, meat extracts (e.g Oxo, Bovril), herring, mackerel, scallops, game meats, and gravy.
  • Moderate intake of purine-containing food is not associated with an increased risk of gout.[29]
  • Serum uric acid can be elevated due to high fructose intake [30], reduced excretion by the kidneys, and or high intake of dietary purine.
  • Added fructose can be found in processed foods and soda beverages as sucrose, or in some countries, as high fructose co syrup.

[edit] Causes of low uric acid

Low uric acid (hypouricemia) can has numerous causes.

Sevelamer, a drug indicated for prevention of hyperphosphataemia in patients with chronic renal failure, can significantly reduce serum uric acid.[31]

[edit] Other uric acid facts

The high nitrogen content of uric acid makes guano a useful agricultural fertilizer.

The crystalline form of uric acid is used as a reflector in certain species of fireflies.

The uric acid in urine can also dry in a baby's diaper to form a pinkish powder that is harmless.

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 424 تاريخ : يکشنبه 24 آذر 1387 ساعت: 4:39

سرکه ، مایع ترشی است که از اکسید شدن اتانول موجود در آب سیب ، ماء الشعیر و موادی از این قبیل بدست می‌آید. معمولاً 3 تا 5 درصد از حجم سرکه‌ها، اسید سیتریک می‌باشد. البته سرکه‌های طبیعی، اسید تارتریک و اسید سیتریک کمتری دارند.

تصویر


تولید سرکه

معمولاً با اضافه نمودن مادر سرکه به آب سیب یا امثال آن ، سرکه تهیه می‌کنند. عمل اکسید شدن را باکتری اسید استیک انجام می‌دهد. این باکتری در سال 1864 میلادی توسط لویی پاستور کشف شد.

استفاده از سرکه در پخت و پز

برای طعم و مزه دادن به انواع غذاها از سرکه بعنوان نوعی چاشنی استفاده می‌کنند. در تهیه انواع ترشی هم این ماده بسیار کاربرد دارد.

سرکه مالت

این نوع سرکه را با مالت کردن جو درست می‌کنند. در فرایند مالت کردن ، نشاسته موجود در دانه جو به قند تبدیل می‌شود. سپس از این قند ، آب جو پدید می‌آید که با گذشت زمان ، این ماده تبدیل به سرکه می‌شود. روشی دیگر ، استفاده از محلول 4 ـ 8 درصدی اسید استیک است که با استفاده از کارامل ، آن را رنگی کرده اند.

مردمان آمریکایی و انگلیسی معمولاً از سرکه مالت همراه با غذای
ماهی
و سیب زمینی سرخ کرده استفاده می‌کنند.


سرکه سفید

این نوع سرکه را با تقطیر سرکه مالت تهیه می‌کنند. البته می‌توان آن را تنها با مخلوط نمودن اسید استیک با آب هم تهیه نمود.

سرکه حنایی رنگ

این نوع سرکه بسیار معطر است که مواد تشکیل دهنده آن را باید مدت زیادی بگذارند بماند تا این نوع سرکه تولید شود. سرکه حنایی رنگ در کشور ایتالیا تهیه می‌شود.

سرکه برنج

مردمان ژاپن دوست دارند که سرکه خود را با برنج تهیه کنند. این سرکه ، خوشمزه است و با انواع غذاها مصرف می‌شود. سرکه برنج از تخمیر شراب برنج که مردم ژاپن از آن استفاده می‌کنند، تهیه می‌شود و مزه غذا را دلچسب‌تر می‌کند. رنگ آن طلایی است و نسبت به سرکه‌های اروپایی ، طعم ملایم‌تری دارد.

خاصیت پاک‌کنندگی

سرکه ، نوعی ماده پاک کننده خنثی و ارزان قیمت است که به محیط زیست هم هیچ آسیبی نمی‌رساند (بر خلاف برخی مواد پاک کننده). معمولاً از سرکه سفید برای پاک کردن استفاده می‌شود. برای مثال ، مخلوط آب و سرکه (یک قسمت سرکه و چهار قسمت آب) قادر است تا شیشه‌های پنجره را بخوبی تمیز کند. اگر احساس می‌کنید که پس از تمیز کردن شیشه‌ها با سرکه ، شیشه‌ها چرب شده‌اند، نصف قاشق غذاخوری صابون مایع به مخلوط اضافه کنید. این صابون مایع ، هر گونه لک و چربی شیشه را از بین می‌برد.

لوله ها را می‌توان با استفاده از مخلوط سرکه سفید و
جوش شیرین
تمیز کرد. پس از مدت زمان معین ، چند گالن آب داخل لوله بریزید تا اثر سرکه و جوش شیرین کاملاً از بین برود.

مصارف دارویی

از سرکه در کشور چین بعنوان نوعی داروی خانگی استفاده می‌شود. معمولاً سرکه را برای جلوگیری از پخش ویروس سارس و ذات الریه مورد مصرف قرار می‌دهند. بنابراین سرکه خاصیت ضد ویروسی دارد. همان طور که می‌دانید، هیدروژن ، برای نابود کردن باکتری و ویروس‌های مواد غذایی پیش از نگهداری غذا در یخچال به کار می‌رود. برای تهیه اسپری‌هایی که بمنظور کنترل بیماری ذات الریه ، معمولاً در قاره آسیا مورد استفاده قرار می‌گیرند، 5 درصد اسید استیک و 3 درصد هیدروژن را با هم مخلوط می‌کنند.
سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 314 تاريخ : يکشنبه 24 آذر 1387 ساعت: 4:30

فرمیک اسید یا متانوئیک اسید ، ساده‌ترین عضو گروه کربوکسیلیک اسیدها می‌باشد. فرمول شیمیایی آن HCOOH بوده و در طبیعت در نیش حشراتی مانند مورچه و زنبور یافت می‌شود. همچنین ترکیب عمده ماده گزش‌زا در برگ گزنه می‌باشد. ریشه لغوی فرمیک اسید از نام لاتینی مورچه ( Formica) گرفته شده است. زیرا این ترکیب اولین بار از تقطیر تخریبی مورچه بدست آمد.


تاریخچه

در قرن 15 شیمیدانها و دانشمندان علوم طبیعی می‌دانستند که از تجمع مورچه‌ها بخارهای اسیدی متصاعد می‌شود. اولین بار "جان ری" طبیعت شناس انگلیسی در سال 1671 این اسید را از تقطیر توده‌ای از مورچه‌های مرده ، جدا کرد. اما سنتز شیمیایی آن ، اولین بار توسط شیمیدان فرانسوی "ژوزف گیلوساک" از اسید هیدروسیانیک انجام گرفت. در سال 1855 شیمیدان فرانسوی دیگری به نام "Marcellin berthelot" اسید فرمیک را با استفاده از منوکسید کربن سنتز کرد، شبیه روشی که امروزه مورد استفاده قرار می‌گیرد.

خواص عمومی اسید

اسید فرمیک به‌‌خوبی با آب و بیشتر حلالهای آلی قطبی مخلوط می‌شود. در هیدروکربنها هم تا حدی حل می‌شود. اسید فرمیک در فاز گازی و در هیدروکرینها به‌صورت دیمرهایی است که با پیوند هیدروژنی به هم متصل شده‌اند. در فاز گازی پیوند هیدروژنی میان مولکولهای اسید فرمیک باعث انحراف از قانون گازهای ایده‌آل می‌شود. اسید فرمیک در حالت مایع و جامد شامل شبکه‌ای نامحدود از مولکولهایی است که با پیوند هیدروژنی به هم متصل هستند. بیشتر خواص اسید فرمیک همانند خواص سایر اسیدهای کربوکسیلیک می‌باشد، اما آن نمی‌تواند آسیل کلرید ایجاد کند.

در صورت تشکیل هریک ازاین ترکیبات ،
تجزیه شده و منوکسید کربن ایجاد می‌کنند. حرارت دادن اسید فرمیک باعث تجزیه آن بر Co می‌شود. اسید فرمیک به‌آسانی احیاء شده و به فرمالدئید تبدیل می‌شود. اسید فرمیک تنها کربوکسیلیک اسیدی است که توانایی شرکت در واکنشهای افزایشی را به همراه آلکنها دارد. اسید فرمیک و آلکنها به‌آسانی باهم واکنش داده و استرهای فرمات ایجاد می‌کنند. اسید فرمیک در حضور اسید سولفوریک و هیدروفلوئوریک اسید ، در واکنش کخ شرکت کرده و اسیدهای کربوکسیلیک بزرگتر ایجاد می‌کند.

خواص فیزیکی اسید فرمیک

نام آیوپاکنام متداولفرمول شیمیاییوزن مولکولیدمای ذوبدمای جوشدانسیتهPKa
متانوئیک اسیداسیدفرمیکHCOOH46.038.4°100.8°1.22gr/Cm33.75


 

روش تولید

در صنعت تولید ترکیبات شیمیایی ، فرمیک اسید به مدت طولانی به‌عنوان ترکیبی که بهره‌وری کمتری را داراست، تلقی می‌شد. قسمت عمده اسید فرمیک به‌عنوان محصول فرعی در تولید سایر ترکیبات شیمیایی ، مخصوصا اسید استیک تولید می‌شود. اما با روند رو به رشد استفاده آن در مواد نگهدارنده و آنتی باکتریال در غذای دام ، امروزه در صنعت به این منظور تولید می‌شود.

وقتی
متانول و منوکسید کربن در حضور یک باز قوی مانند منوکسید سدیم باهم واکنش می‌دهند، مشتقی از اسید فرمیک به نام متیل فرمات تولید می‌شود. این واکنش در فاز مایع در دمای درجه سانتیگراد و فشار 40atm انجام می‌شود. از هیدرولیز متیل فرمات ، اسید فرمیک ایجاد می‌شود.


کاربرد ویژه

اسید فرمیک بیشتر به‌عنوان نگهدارنده (جلوگیری از فاسد شدن) و آنتی باکتریال در غذای دام استفاده می‌شود. پاشیدن مقداری از آن روی علف تازه خشک شده از فساد و پوسیدگی آن جلوگیری کرده و مواد مغذی آن را تا حد بالایی حفظ می‌کند. برای جلوگیری از فساد غذای زمستانی دامها در مجتمعهای بزرگ دامداری از این ماده استفاده می‌شود.

اسید فرمیک در مرغداریها برای از بین بردن باکتری سالمونلا به غذای مرغها اضافه می‌شود. این ترکیب همچنین به مقدار ناچیز در
صنعت نساجی و دباغی استفاده می‌شود. برخی از مشتقات آن مانند استرهای فرمات در صنعت خوشبوکننده‌ها مورد استفاده قرار می‌گیرند.

ایمنی

بیشترین خطر فرمیک اسید در تماس پوست یا چشم با مایع یا بخار غلیظ آن می‌باشد. تماس پوست با مایع یا بخار آن باعث سوختگی شیمیایی و در صورت تماس با چشم ممکن است باعث ایجاد آسیبهای دائمی در چشم شود. تنفس بخار آن موجب تحریک و سوزش دستگاه نفسی می‌شود. از آنجا که ممکن است مقادیری CO در بخار اسید فرمیک موجود باشد، باید در نگهداری ، حمل و نقل و استفاده از آن ، نکات ایمنی کاملا رعایت شود.

سازمان غذا و داروی آمریکا مقدار مجاز ، بخار اسید فرمیک در هوای محیط کار را 5ppm اعلام کرده است. اسید فرمیک به‌آسانی متابولیزه شده و از بدن دفع می‌شود. اما با این همه قرار گرفتن مداوم در معرض آن باعث ایجاد عوارض مزمن مثل ایجاد حساسیتهای پوستی می‌شود. آزمایش روی حیوانات آزمایشگاهی نشان می‌دهد که قرار گرفتن طولانی در معرض اسید فرمیک باعث ایجاد جهش ژنی و آسیبهای کلیوی و کبدی می‌شود.

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 280 تاريخ : يکشنبه 24 آذر 1387 ساعت: 4:22

اسید سیتریک

نگاه کلی

اسید استیک ، جزو اسیدهای کربوکسیلیک می‌باشد و در نامگذاری آیوپاک به اسید اتانوئیک معروف است. این اسید دارای فرمول شیمیایی CH3COOH می‌باشد و در قسمت چشایی ، طعم ترشی شبیه طعم سرکه می‌دهد. باکتری‌های مخمر سرکه به دلیل تمایل به تولید اسید استیک به این نام معروف شده‌اند. این باکتری‌ها در مواد غذایی ، آب و خاک یافت می‌شوند.

اسید استیک بطور طبیعی از میوه‌ها و برخی مواد غذایی فاسد شده از فرایند تخمیر تولید می‌شوند و از قدیمی‌ترین ترکیبات شیمیایی
شناخته شده توسط انسان می‌باشد.


تاریخچه

سرکه (اسید استیک رقیق) از دوران باستان برای انسان شناخته شده بود. احتمالا انسان‌ها در دوران باستان هنگام تهیه شراب از فرایند تخمیر به وجود سرکه پی برده بودند. فیلسوف یونانی ، "تئوفاراستوس" ، در سه قرن پیش از میلاد چگونگی واکنش سرکه با فلزات و تولید رنگدانه برای استفاده در نقاشی از کربنات سرب و زاج‌های سبز ایجاد شده از نمکهای مس و استات مس را توضیح داده است.

رومیان باستان با نگهداری شراب ترش در قدح‌های سربی ، شراب بسیار شیرینی به نام Sapa تولید می‌کردند که طعم شیرین آن ناشی از استات سرب بوده است که امروزه دانشمندان ، مرگ زودرس بسیاری از اشراف روم را به مسمومیت ناشی از این ماده نسبت داده‌اند. شیمیدان‌های عصر رنسانس ، اسید استیک گلاسیال (منجمد) را از تقطیر
خشک استات‌های فلزی تهیه می‌کردند.

در سال 1847، "هرمن کولب" شیمیدان آلمانی برای اولین بار اسید استیک را از مواد معدنی
سنتز کرد.

خواص

اسید استیک خالص ، مایعی بیرنگ با بویی تیز ، مایعی خورنده و قابل اشتعال می‌باشد. این اسید در 16.6 درجه سانتی‌گراد منجمد می‌شود. به این دلیل و همچنین ظاهر یخ مانند آن به نام اسید استیک گلاسیال معروف است. اسید استیک در محلول‌های آبی می‌تواند تفکیک شده و یون استات تولید کند. PH آن برابر با 4.8 می‌باشد، یعنی در PH=4.8 نیمی از مولکول‌های اسید استیک در محلول آبی به صورت یون استات هستند.

اسید استیک در حالت بخار شامل دیمرهایی از دو مولکول اسید استیک می‌باشد که با پیوند هیدروژنی با یکدیگر ارتباط دارند. بنابراین اسید استیک در حالت گازی از قانون گازهای ایده‌آل تبعیت نمی‌کند. خواص عمومی اسید استیک مانند سایر اسیدهای کربوکسیلیک می‌باشد. اسید استیک با الکلها و آمین‌ها واکنش داده و بترتیب تولید استرو آمید می‌کند. همچنین در اثر واکنش با آلکن‌ها تولید استر استات می‌کند. این اسید در اثر حرارت تا دماهای بالاتر از 44 درجه سانتی‌گراد تجزیه شده و تولید CO2 و متان
می‌کند.

تولید

سرکه از فرایند تخمیر مواد غذایی دارای نشاسته و قند و مواد الکلی توسط باکتری مخمر سرکه (بچه سرکه) تولید می‌شود. برای تولید سرکه عموما از میوه‌هایی مانند سیب ، انگور ، دانه‌هایی مثل جو و گاهی هم از شراب استفاده می‌شود. سرکه معمولا دارای اسید استیک با وزن حجمی 4 الی 8 درصد می‌باشد.

روشهای تولید صنعتی اسید اسیتیک

کربونیلاسیون متانول

در این روش متانول با مونوکسید کربن در فشارهای بالا (200atm) واکنش داده و اسید استیک تولید می‌کند. این روش از سال 1920 ابداع شده است و بدلیل ارزان بودن متانول و CO از لحاظ اقتصادی مقرون به صرفه است.


CH3OH + CO → CH3COOH

اکسیداسیون بوتان

از حرارت دادن بوتان با اکسیژن هوا در حضور یون‌های فلزی منگنز ، کبالت و کروم ، پروکسید تولید می‌شود. پروکسید در اثر تجزیه ، اسید استیک ایجاد می‌کند.

اکسیداسیون استالدئید

استالدئید در شرایط ملایم و در حضور کاتالیزورهای ساده فلزی مثل منگنز و کروم و... ، توسط اکسیژن هوا اکسید شده و اسید استیک تولید می‌کند.


2CH3CHO + 2O2 → 2CH3COOH

محصولات جانبی تولید شده در این واکنش مانند اسید فرمیک یا استات اتیل و... بدلیل داشتن نقطه جوش پایین‌تر از اسید استیک توسط تقطیر جداسازی می‌شوند.

کاربرد

اسید استیک به صورت سرکه به عنوان چاشنی غذا و تهیه انواع ترشی استفاده می‌شود. اسید استیک رقیق به عنوان افشانه برای از بین بردن قارچ‌های گیاهان استفاده می‌شود. اسید استیک گلاسیال در صنایع شیمیایی در تولید فیلم‌های عکاسی ، تولید پلاستیک پلی‌اتیلن تری‌فتالات (PET) استفاده می‌شود. همچنین به عنوان ماده واسطه در تولید استات وینیل که ترکیب مهمی در تولید چسب و رنگ می‌باشد، کاربرد دارد.

برخی از استرهای اسید استیک به عنوان حلال در تولید مواد معطر
مصنوعی استفاده می‌شود.


نکات ایمنی

اسید استیک غلیظ ماده‌ای خورنده می‌باشد. در تماس با پوست باعث سوختگی شیمیایی پوست و ایجاد تاول می‌شود. در صورت تماس با چشم می‌تواند آسیب‌های جدی به چشم وارد کند، تنفس بخار غلیظ آن باعث سوزش دهان ، بینی و گلو می‌شود. هر چند سرکه یک مایع بدون ضرر می‌باشد، اما نوشیدن اسید استیک گلاسیال خطرناک بوده و باعث ایجاد زخم‌های شدید در دستگاه گوارشی می‌شود و ممکن است با تغییر اسیدیته خون ، آسیب‌های جدی به سلامتی انسان وارد کند.


خواص فیزیکی
اسید استیکنام
متان کربوکسیلیک اسید و اتانوئیک‌ اسیدنام آیوپاک
60.05gr/molوزن مولکولی
16.5Cْنقطه ذوب
118.1Cْنقطه جوش
1.05gr/cm3دانسیته
سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 226 تاريخ : يکشنبه 24 آذر 1387 ساعت: 4:19

 

برای مشاهده مطالب به ادامه مطلب مراجعه نمایید.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 258 تاريخ : يکشنبه 24 آذر 1387 ساعت: 4:13

Stearic acid (first syllable rhymes with either bear or gear) (IUPAC systematic name: octadecanoic acid) or 18:0 is a saturated fatty acid. It is a waxy solid, and its chemical formula is C18H36O2. Its name comes from the Greek word stéar (genitive: stéatos), which means tallow. The salts and esters of stearic acid are called stearates.

Food sources

It occurs in many animal and vegetable fats and oils. One important source is cocoa.

Production

Stearic acid is prepared by treating animal fat with water at a high pressure and temperature, leading to the hydrolysis of triglycerides. It can also be obtained from the hydrogenation of some unsaturated vegetable oils. Common stearic acid is actually a mix of stearic acid and palmitic acid, although purified stearic acid is available separately.

Uses

Stearic acid is useful as an ingredient in making candles, plastics, dietary supplements, oil pastels and cosmetics, and for softening rubber.[2] It is used to harden soaps, particularly those made with vegetable oil.

Stearic acid is also used as a parting compound when making plaster castings from a plaster piece mold or waste mold and when making the mold from a shellacked clay original. In this use, powdered stearic acid is dissolved in water and the solution is brushed onto the surface to be parted after casting.

Esters of stearic acid with ethylene glycol, glycol stearate and glycol distearate are used to produce a pearly effect in shampoos, soaps, and other cosmetic products. They are added to the product in molten form and allowed to crystalize under controlled conditions.

In fireworks, stearic acid is often used to coat metal powders such as aluminium and iron. This prevents oxidation, allowing compositions to be stored for longer.

It is used along with simple sugar or co syrup as a hardener in candies.

Stearic acid is one of most commonly used lubricants during injection molding and pressing of ceramic powders.[3]

Reactions

Stearic acid undergoes the typical reactions of saturated carboxylic acids, notably reduction to stearyl alcohol, and esterification with a range of alcohols.

Metabolism

An isotope labeling study in humans[4] concluded that the fraction of dietary stearic acid oxidatively desaturated to oleic acid was 2.4 times higher than the fraction of palmitic acid analogously converted to palmitoleic acid. Also, stearic acid was less likely to be incorporated into cholesterol esters. These findings may indicate that stearic acid is less unhealthy than other saturated fatty acids.

 

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 303 تاريخ : يکشنبه 24 آذر 1387 ساعت: 4:6

Carboxylic acids are organic acids characterized by the presence of a carboxyl group, which has the formula -C(=O)OH, usually written -COOH or -CO2H. [1] Carboxylic acids are Brønsted-Lowry acids — they are proton donors. Salts and anions of carboxylic acids are called carboxylates.

The simplest series of carboxylic acids are the alkanoic acids, R-COOH, where R is a hydrogen or an alkyl group. Compounds may also have two or more carboxylic acid groups per molecule.

 Physical properties

Carboxylic acid dimers

Carboxylic acids are polar, and form hydrogen bonds with each other. At high temperatures, in vapor phase, carboxylic acids usually exist as dimeric pairs. Lower carboxylic acids (1 to 4 carbons) are miscible with water, whereas higher carboxylic acids are very much less-soluble due to the increasing hydrophobic nature of the alkyl chain. They tend to be rather soluble in less-polar solvents such as ethers and alcohols.[2]

Carboxylic acids are widespread in nature and are typically weak acids, meaning that they only partially dissociate into H+ cations and RCOO anions in aqueous solution. For example, at room temperature, only 0.02 % of all acetic acid molecules are dissociated in water.

Since the carboxylic acids are weak acids, in water, both forms exist in an equilibrium:

RCOOH ↔ RCOO + H+

The acidity of carboxylic acids can be explained by either the stability of the acid or the stability of the conjugate base using inductive effects or resonance effects.

 Stability of the acid

Using inductive effects, the acidity of carboxylic acids can be rationalized by the two electronegative oxygen atoms distorting the electron clouds surrounding the O-H bond, weakening it. The weak O-H bond causes the acid molecule to be less stable, and causing the hydrogen atom to be labile, thus it dissociates easily to give the H+ ion. Since the acid is unstable, the equilibrium will lie on the right.

Additional electronegative atoms or groups, such as chlorine or hydroxyl, substituted on the R-group have a similar, though lesser effect. The presence of these groups increases the acidity through inductive effects. For example, trichloroacetic acid (three -Cl groups) is a stronger acid than lactic acid (one -OH group), which in tu is stronger than acetic acid (no electronegative constituent).

 Stability of the conjugate base

Resonance stabilization of carboxylic acids

The acidity of a carboxylic acid can also be explained by resonance effects. The result of the dissociation of a carboxylic acid is a resonance stabilized product in which the negative charge is shared (delocalized) between the two oxygen atoms. Each of the carbon-oxygen bonds has what is called a partial double-bond characteristic. Since the conjugate base is stabilized, the above equilibrium lies on the right.

 Spectroscopy

Carboxylic acids are most readily identified as such by infrared spectroscopy. They exhibit a sharp C=O stretch between 1680 and 1725 cm−1, and the characteristic O-H stretch of the carboxyl group appears as a broad peak in the 2500 to 3000 cm−1 region.[2]

In 1H NMR spectrometry, the hydroxyl hydrogen appears in the 10-13 ppm region, though it is often either broadened or not observed due to exchange with any traces of water.

Sources

Lower straight-chain aliphatic carboxylic acids, as well as those of even carbon number up to C18, are commercially available. For example, acetic acid is produced by methanol carbonylation with carbon monoxide, whereas long chain carboxylic acids are obtained by the hydrolysis of triglycerides obtained from plant or animal oils.

Vinegar, a dilute solution of acetic acid, is biologically produced from the fermentation of ethanol. It is used in food and beverages, but is not used in industry.

 Synthesis

  • Carboxylic acids can be produced by oxidation of primary alcohols or aldehydes with strong oxidants such as potassium dichromate, Jones reagent, potassium permanganate, or sodium chlorite.
  • They may also be produced by the oxidative cleavage of olefins by ozonolysis, potassium permanganate, or potassium dichromate. In particular, any alkyl group on a benzene ring will be fully oxidized to a carboxylic acid, regardless of its chain length. This is the basis for the industrial synthesis of benzoic acid from toluene.
  • Carboxylic acids can also be obtained by the hydrolysis of nitriles, esters, or amides, with the addition of acid or base.
  • They can also be prepared from the action of a Grignard reagent on carbon dioxide, though this method is not used in industry.

Carboxylic acids may also form from the following reactions:

  • Disproportionation of an aldehyde in the Cannizzaro reaction
  • Rearrangement of diketones in the benzilic acid rearrangement
  • Halogenation followed by hydrolysis of methyl ketones in the haloform reaction
  • Hydroformylation of an alkene followed by hydrolysis in the Koch reaction
  • Less-common reactions involving the generation of benzoic acids are the von Richter reaction from nitrobenzenes and the Kolbe-Schmitt reaction from phenols.

 Reactions

  • Carboxylic acids react with bases to form carboxylate salts, in which the hydrogen of the hydroxyl (-OH) group is replaced with a metal cation. Thus, acetic acid found in vinegar reacts with sodium bicarbonate (baking soda) to form sodium acetate, carbon dioxide, and water:
CH3COOH + NaHCO3 → CH3COONa+ + CO2 + H2O
  • Carboxylic acids also react with alcohols and amines to give esters and amides. Like other alcohols and phenols, the hydroxyl group on carboxylic acids may be replaced with a chlorine atom using thionyl chloride to give acyl chlorides.
  • As with all carbonyl compounds, the protons on the α-carbon are labile due to keto-enol tautomerization. Thus the α-carbon is easily halogenated in the Hell-Volhard-Zelinsky halogenation.
  • The Adt-Eistert synthesis inserts an α-methylene group into a carboxylic acid.
  • The Curtius rearrangement converts carboxylic acids to isocyanates.
  • The Schmidt reaction converts carboxylic acids to amines.
  • Carboxylic acids are decarboxylated in the Hunsdiecker reaction.
  • The Dakin-West reaction converts an amino acid to the corresponding amino ketone.
  • In the Barbier-Wieland degradation (1912), the alpha-methylene group in an aliphatic carboxylic acid is removed in a sequence of reaction steps, effectively a chain-shortening [3] [4].
  • The addition of a carboxyl group to a compound is known as carboxylation; the removal of one is decarboxylation. Enzymes that catalyze these reactions are known as carboxylases (EC 6.4.1) and decarboxylases (EC 4.1.1).

Nomenclature and examples

The carboxylate anion R-COO is usually named with the suffix -ate, so acetic acid, for example, becomes acetate ion. In IUPAC nomenclature, carboxylic acids have an -oic acid suffix (e.g., octadecanoic acid). In common nomenclature, the suffix is usually -ic acid (e.g., stearic acid).

Straight-Chained, Saturated Carboxylic Acids
Carbon atomsCommon nameIUPAC nameChemical formulaCommon location or use
1Formic acidMethanoic acidHCOOHInsect stings
2Acetic acidEthanoic acidCH3COOHVinegar
3Propionic acidPropanoic acidCH3CH2COOH
4Butyric acidButanoic acidCH3(CH2)2COOHRancid butter
5Valeric acidPentanoic acidCH3(CH2)3COOHValerian
6Caproic acidHexanoic acidCH3(CH2)4COOH
7Enanthic acidHeptanoic acidCH3(CH2)5COOH
8Caprylic acidOctanoic acidCH3(CH2)6COOHCoconuts and breast milk
9Pelargonic acidNonanoic acidCH3(CH2)7COOHPelargonium
10Capric acidDecanoic acidCH3(CH2)8COOH
12Lauric acidDodecanoic acidCH3(CH2)10COOHCoconut oil
16Palmitic acidHexadecanoic acidCH3(CH2)14COOHPalm oil
18Stearic acidOctadecanoic acidCH3(CH2)16COOHSome waxes, soaps, and oils

Other carboxylic acids include:

  • Short-chain unsaturated monocarboxylic acids
    • Acrylic acid (2-propenoic acid) – CH2=CHCOOH, used in polymer synthesis
  • Fatty acids – medium to long-chain saturated and unsaturated monocarboxylic acids, with even number of carbons
    • Docosahexaenoic acid – nutritional supplement
    • Eicosapentaenoic acid – nutritional supplement
  • Amino acids – the building blocks of proteins
  • Keto acids – acids of biochemical significance that contain a ketone group
    • Pyruvic acid
    • Acetoacetic acid
  • Aromatic carboxylic acids
    • Benzoic acid – C6H5COOH; sodium benzoate, the sodium salt of benzoic acid is used as a food preservative
    • Salicylic acid – found in many skin care products
  • Dicarboxylic acids – containing two carboxyl groups
    • Aldaric acid – a family of sugar acids
    • Oxalic acid – found in many foods
    • Malonic acid
    • Malic acid – found in apples
    • Fumaric acid
    • Succinic acid – a component of the citric acid cycle
    • Glutaric acid
    • Adipic acid – the monomer used to produce nylon
  • Tricarboxylic acids – containing three carboxyl groups
    • Citric acid – found in citrus fruits
    • Isocitric acid
    • Aconitic acid
    • Propane-1,2,3-tricarboxylic acid (tricarballylic acid, carballylic acid)
  • Alpha hydroxy acids – containing a hydroxy group
    • Lactic acid (2-hydroxypropanoic acid) – found in sour milk
سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 273 تاريخ : يکشنبه 24 آذر 1387 ساعت: 4:4

Acetic acid, also known as ethanoic acid, is an organic chemical compound, giving vinegar its sour taste and pungent smell. Its structural formula is represented as CH3COOH. Pure, water-free acetic acid (glacial acetic acid) is a colourless liquid that absorbs water from the environment (hygroscopy), and freezes below 16.7 °C (62 °F) to a colourless crystalline solid. Acetic acid is corrosive, and its vapour causes irritation to the eyes, a dry and buing nose, sore throat and congestion to the lungs. It is a weak acid because at standard conditions for temperature and pressure the dissociated acid exists in equilibrium with the undissociated form in aqueous solutions, in contrast to strong acids, which are fully dissociated.

Acetic acid is one of the simplest carboxylic acids (the second-simplest, next to formic acid). It is an important chemical reagent and industrial chemical that is used in the production of polyethylene terephthalate mainly used in soft drink bottles; cellulose acetate, mainly for photographic film; and polyvinyl acetate for wood glue, as well as synthetic fibres and fabrics. In households diluted acetic acid is often used in descaling agents. In the food industry acetic acid is used under the food additive code E260 as an acidity regulator.

The global demand of acetic acid is around 6.5 million tonnes per year (Mt/a), of which approximately 1.5 Mt/a is met by recycling; the remainder is manufactured from petrochemical feedstocks or from biological sources.

 

 Nomenclature

The trivial name acetic acid is the most commonly used and officially preferred name by the IUPAC. This name derives from acetum, the Latin word for vinegar, and is related to the word acid itself. The synonym ethanoic acid is a systematic name that is used in introductions to chemical nomenclature.

Glacial acetic acid is a trivial name for water-free acetic acid. Similar to the German name Eisessig (literally, ice-vinegar), the name comes from the ice-like crystals that form slightly below room temperature at 16.7 °C (about 62 °F).

The most common and official abbreviation for acetic acid is AcOH or HOAc where Ac stands for the acetyl group CH3−C(=O)−;. In the context of acid-base reactions the abbreviation HAc is often used where Ac instead stands for the acetate anion (CH3COO), although this use is regarded by many as misleading. In either case, the Ac is not to be confused with the abbreviation for the chemical element actinium.

Acetic acid has the empirical formula CH2O and the molecular formula C2H4O2 or HC2H3O2 (to emphasize the role of the 'active' hydrogen in forming the salt sodium acetate).[1] To better reflect its structure, acetic acid is often written as CH3-CO2-H, CH3COOH, CH3CO2H, or HOCOCH3. The ion resulting from loss of H+ from acetic acid is the acetate anion. The name acetate can also refer to a salt containing this anion, or an ester of acetic acid.

 History

Crystallized acetic acid

Vinegar was known, early in civilization, as the natural result of air exposure of beer and wine, as acetic acid-producing bacteria are present throughout the world.

The use of acetic acid in alchemy extends into the third century BC, when the Greek philosopher Theophrastus described how vinegar acted on metals to produce pigments useful in art, including white lead (lead carbonate) and verdigris, a green mixture of copper salts including copper(II) acetate. Ancient Romans boiled soured wine in lead pots to produce a highly sweet syrup called sapa. Sapa was rich in lead acetate, a sweet substance also called sugar of lead or sugar of Satu, which contributed to lead poisoning among the Roman aristocracy.

In the 8th century the Muslim alchemist Jabir Ibn Hayyan (Geber) was the first to concentrate acetic acid from vinegar through distillation. In the Renaissance, glacial acetic acid was prepared through the dry distillation of certain metal acetates (most noticeably copper(II) acetate). The 16th century German alchemist Andreas Libavius described such a procedure, and he compared the glacial acetic acid produced by this means to vinegar. The presence of water in vinegar has such a profound effect on acetic acid's properties that for centuries chemists believed that glacial acetic acid and the acid found in vinegar were two different substances. The French chemist Pierre Adet proved them to be identical.

In 1847 the German chemist Hermann Kolbe synthesized acetic acid from inorganic materials for the first time. This reaction sequence consisted of chlorination of carbon disulfide to carbon tetrachloride, followed by pyrolysis to tetrachloroethylene and aqueous chlorination to trichloroacetic acid, and concluded with electrolytic reduction to acetic acid.[2]

Detail of acetic acid crystals

By 1910 most glacial acetic acid was obtained from the "pyroligneous liquor" from distillation of wood. The acetic acid was isolated from this by treatment with milk of lime, and the resultant calcium acetate was then acidified with sulfuric acid to recover acetic acid. At this time Germany was producing 10,000 tons of glacial acetic acid, around 30% of which was used for the manufacture of indigo dye.[3][4]

 Chemical properties

The hydrogen (H) atom in the carboxyl group (−COOH) in carboxylic acids such as acetic acid can be given off as an H+ ion (proton), giving them their acidic character. Acetic acid is a weak, effectively monoprotic acid in aqueous solution, with a pKa value of 4.75. Its conjugate base is acetate (CH3COO). A 1.0 M solution (about the concentration of domestic vinegar) has a pH of 2.4, indicating that merely 0.4% of the acetic acid molecules are dissociated.

Cyclic dimer of acetic acid; dashed lines represent hydrogen bonds.

The crystal structure of acetic acid shows that the molecules pair up into dimers connected by hydrogen bonds.[5] The dimers can also be detected in the vapour at 120 °C. They also occur in the liquid phase in dilute solutions in non-hydrogen-bonding solvents, and a certain extent in pure acetic acid,[6] but are disrupted by hydrogen-bonding solvents. The dissociation enthalpy of the dimer is estimated at 65.0–66.0 kJ/mol, and the dissociation entropy at 154–157 J mol–1 K–1.[7] This dimerization behaviour is shared by other lower carboxylic acids.

Liquid acetic acid is a hydrophilic (polar) protic solvent, similar to ethanol and water. With a moderate relative static permittivity (dielectric constant) of 6.2, it can dissolve not only polar compounds such as inorganic salts and sugars, but also non-polar compounds such as oils and elements such as sulfur and iodine. It readily mixes with other polar and non-polar solvents such as water, chloroform, and hexane. This dissolving property and miscibility of acetic acid makes it a widely used industrial chemical.

 Chemical reactions

Acetic acid is corrosive to metals including iron, magnesium, and zinc, forming hydrogen gas and metal salts called acetates. Aluminium, when exposed to oxygen, forms a thin layer of aluminium oxide on its surface which is relatively resistant, so that aluminium tanks can be used to transport acetic acid. Metal acetates can also be prepared from acetic acid and an appropriate base, as in the popular "baking soda + vinegar" reaction. With the notable exception of chromium(II) acetate, almost all acetates are soluble in water.

Mg(s) + 2 CH3COOH(aq) → (CH3COO)2Mg(aq) + H2(g)
NaHCO3(s) + CH3COOH(aq) → CH3COONa(aq) + CO2(g) + H2O(l)

Acetic acid undergoes the typical chemical reactions of a carboxylic acid, such as producing water and a metal ethanoate when reacting with alkalis, producing a metal ethanoate when reacted with a metal, and producing a metal ethanoate, water and carbon dioxide when reacting with carbonates and hydrogencarbonates. Most notable of all its reactions is the formation of ethanol by reduction, and formation of derivatives such as acetyl chloride via nucleophilic acyl substitution. Other substitution derivatives include acetic anhydride; this anhydride is produced by loss of water from two molecules of acetic acid. Esters of acetic acid can likewise be formed via Fischer esterification, and amides can also be formed. When heated above 440 °C, acetic acid decomposes to produce carbon dioxide and methane, or to produce ketene and water.

Acetic acid can be detected by its characteristic smell. A colour reaction for salts of acetic acid is iron(III) chloride solution, which results in a deeply red colour that disappears after acidification. Acetates when heated with arsenic trioxide form cacodyl oxide, which can be detected by its malodorous vapours.

 Biochemistry

The acetyl group, derived from acetic acid, is fundamental to the biochemistry of virtually all forms of life. When bound to coenzyme A it is central to the metabolism of carbohydrates and fats. However, the concentration of free acetic acid in cells is kept at a low level to avoid disrupting the control of the pH of the cell contents. Unlike longer-chain carboxylic acids (the fatty acids), acetic acid does not occur in natural triglycerides. However, the artificial triglyceride triacetin (glycerin triacetate) is a common food additive, and is found in cosmetics and topical medicines.

Acetic acid is produced and excreted by certain bacteria, notably the Acetobacter genus and Clostridium acetobutylicum. These bacteria are found universally in foodstuffs, water, and soil, and acetic acid is produced naturally as fruits and other foods spoil. Acetic acid is also a component of the vaginal lubrication of humans and other primates, where it appears to serve as a mild antibacterial agent.[8]

 Production

Purification and concentration plant for acetic acid in 1884

Acetic acid is produced both synthetically and by bacterial fermentation. Today, the biological route accounts for only about 10% of world production, but it remains important for vinegar production, as the world food purity laws stipulate that vinegar used in foods must be of biological origin. About 75% of acetic acid made for use in the chemical industry is made by methanol carbonylation, explained below. Alteative methods account for the rest.[9] Total worldwide production of virgin acetic acid is estimated at 5 Mt/a (million tonnes per year), approximately half of which is produced in the United States. European production stands at approximately 1 Mt/a and is declining, and 0.7 Mt/a is produced in Japan. Another 1.5 Mt are recycled each year, bringing the total world market to 6.5 Mt/a.[10][11] The two biggest producers of virgin acetic acid are Celanese and BP Chemicals. Other major producers include Millennium Chemicals, Sterling Chemicals, Samsung, Eastman, and Svensk Etanolkemi.

 Methanol carbonylation

Most virgin acetic acid is produced by methanol carbonylation. In this process, methanol and carbon monoxide react to produce acetic acid according to the chemical equation:

CH3OH + CO → CH3COOH

The process involves iodomethane as an intermediate, and occurs in three steps. A catalyst, usually a metal complex, is needed for the carbonylation (step 2).

(1) CH3OH + HI → CH3I + H2O
(2) CH3I + CO → CH3COI
(3) CH3COI + H2O → CH3COOH + HI

By altering the process conditions, acetic anhydride may also be produced on the same plant. Because both methanol and carbon monoxide are commodity raw materials, methanol carbonylation long appeared to be an attractive method for acetic acid production. Henry Drefyus at British Celanese developed a methanol carbonylation pilot plant as early as 1925.[12] However, a lack of practical materials that could contain the corrosive reaction mixture at the high pressures needed (200 atm or more) discouraged commercialization of these routes. The first commercial methanol carbonylation process, which used a cobalt catalyst, was developed by German chemical company BASF in 1963. In 1968, a rhodium-based catalyst (cis−[Rh(CO)2I2]) was discovered that could operate efficiently at lower pressure with almost no by-products. The first plant using this catalyst was built by US chemical company Monsanto in 1970, and rhodium-catalysed methanol carbonylation became the dominant method of acetic acid production (see Monsanto process). In the late 1990s, the chemicals company BP Chemicals commercialized the Cativa catalyst ([Ir(CO)2I2]), which is promoted by ruthenium. This iridium-catalysed process is greener and more efficient[13] and has largely supplanted the Monsanto process, often in the same production plants.

 Acetaldehyde oxidation

Prior to the commercialization of the Monsanto process, most acetic acid was produced by oxidation of acetaldehyde. This remains the second most important manufacturing method, although it is uncompetitive with methanol carbonylation.

The acetaldehyde may be produced via oxidation of butane or light naphtha, or by hydration of ethylene. When butane or light naphtha is heated with air in the presence of various metal ions, including those of manganese, cobalt and chromium; peroxides form and then decompose to produce acetic acid according to the chemical equation

2 C4H10 + 5 O2 → 4 CH3COOH + 2 H2O

Typically, the reaction is run at a combination of temperature and pressure designed to be as hot as possible while still keeping the butane a liquid. Typical reaction conditions are 150 °C and 55 atm. Side products may also form, including butanone, ethyl acetate, formic acid, and propionic acid. These side products are also commercially valuable, and the reaction conditions may be altered to produce more of them if this is economically useful. However, the separation of acetic acid from these by-products adds to the cost of the process.

Under similar conditions and using similar catalysts as are used for butane oxidation, acetaldehyde can be oxidized by the oxygen in air to produce acetic acid

2 CH3CHO + O2 → 2 CH3COOH

Using mode catalysts, this reaction can have an acetic acid yield greater than 95%. The major side products are ethyl acetate, formic acid, and formaldehyde, all of which have lower boiling points than acetic acid and are readily separated by distillation.[14]

 Ethylene oxidation

Acetaldehyde may be prepared from ethylene via the Wacker process, and then oxidized as above. More recently a cheaper single-stage conversion of ethylene to acetic acid was commercialized by chemical company Showa Denko, which opened an ethylene oxidation plant in Ōita, Japan, in 1997.[15] The process is catalysed by a palladium metal catalyst supported on a heteropoly acid such as tungstosilicic acid. It is thought to be competitive with methanol carbonylation for smaller plants (100–250 kt/a), depending on the local price of ethylene.

Oxidative fermentation

For most of human history, acetic acid, in the form of vinegar, has been made by acetic acid bacteria of the genus Acetobacter. Given sufficient oxygen, these bacteria can produce vinegar from a variety of alcoholic foodstuffs. Commonly used feeds include apple cider, wine, and fermented grain, malt, rice, or potato mashes. The overall chemical reaction facilitated by these bacteria is:

C2H5OH + O2 → CH3COOH + H2O

A dilute alcohol solution inoculated with Acetobacter and kept in a warm, airy place will become vinegar over the course of a few months. Industrial vinegar-making methods accelerate this process by improving the supply of oxygen to the bacteria.

The first batches of vinegar produced by fermentation probably followed errors in the winemaking process. If must is fermented at too high a temperature, acetobacter will overwhelm the yeast naturally occurring on the grapes. As the demand for vinegar for culinary, medical, and sanitary purposes increased, vintners quickly leaed to use other organic materials to produce vinegar in the hot summer months before the grapes were ripe and ready for processing into wine. This method was slow, however, and not always successful, as the vintners did not understand the process.

One of the first mode commercial processes was the "fast method" or "German method", first practiced in Germany in 1823.In this process, fermentation takes place in a tower packed with wood shavings or charcoal. The alcohol-containing feed is trickled into the top of the tower, and fresh air supplied from the bottom by either natural or forced convection. The improved air supply in this process cut the time to prepare vinegar from months to weeks.[16]

Most vinegar today is made in submerged tank culture, first described in 1949 by Otto Hromatka and Heinrich Ebner.[17] In this method, alcohol is fermented to vinegar in a continuously stirred tank, and oxygen is supplied by bubbling air through the solution. Using mode applications of this method, vinegar of 15% acetic acid can be prepared in only 24 hours in batch process, even 20% in 60 h fed-batch process.[18]

Anaerobic fermentation

Species of anaerobic bacteria, including members of the genus Clostridium, can convert sugars to acetic acid directly, without using ethanol as an intermediate. The overall chemical reaction conducted by these bacteria may be represented as:

C6H12O6 → 3 CH3COOH

More interestingly from the point of view of an industrial chemist, these acetogenic bacteria can produce acetic acid from one-carbon compounds, including methanol, carbon monoxide, or a mixture of carbon dioxide and hydrogen:

2 CO2 + 4 H2 → CH3COOH + 2 H2O

This ability of Clostridium to utilize sugars directly, or to produce acetic acid from less costly inputs, means that these bacteria could potentially produce acetic acid more efficiently than ethanol-oxidizers like Acetobacter. However, Clostridium bacteria are less acid-tolerant than Acetobacter. Even the most acid-tolerant Clostridium strains can produce vinegar of only a few per cent acetic acid, compared to Acetobacter strains that can produce vinegar of up to 20% acetic acid. At present, it remains more cost-effective to produce vinegar using Acetobacter than to produce it using Clostridium and then concentrating it. As a result, although acetogenic bacteria have been known since 1940, their industrial use remains confined to a few niche applications.[19]

Applications

2.5-litre bottle of acetic acid in a laboratory.

Acetic acid is a chemical reagent for the production of chemical compounds. The largest single use of acetic acid is in the production of vinyl acetate monomer, closely followed by acetic anhydride and ester production. The volume of acetic acid used in vinegar is comparatively small.

 Vinyl acetate monomer

The major use of acetic acid is for the production of vinyl acetate monomer (VAM). This application consumes approximately 40% to 45% of the world's production of acetic acid. The reaction is of ethylene and acetic acid with oxygen over a palladium catalyst.

2 H3C-COOH + 2 C2H4 + O2 → 2 H3C-CO-O-CH=CH2 + 2 H2O

Vinyl acetate can be polymerized to polyvinyl acetate or to other polymers, which are applied in paints and adhesives.

[edit] Ester production

The major esters of acetic acid are commonly used solvents for inks, paints and coatings. The esters include ethyl acetate, n-butyl acetate, isobutyl acetate, and propyl acetate. They are typically produced by catalysed reaction from acetic acid and the corresponding alcohol:

H3C-COOH + HO-R → H3C-CO-O-R + H2O
where R = a general alkyl group

Most acetate esters, however, are produced from acetaldehyde using the Tishchenko reaction. Additionally, ether acetates are used as solvents for nitrocellulose, acrylic lacquers, vaish removers and wood stains. First glycol monoethers are produced from ethylene oxide or propylene oxide with alcohol, which are then esterified with acetic acid. The three major products are ethylene glycol monoethyl ether acetate (EEA), ethylene glycol monobutyl ether acetate (EBA), and propylene glycol monomethyl ether acetate (PMA). This application consumes about 15% to 20% of worldwide acetic acid. Ether acetates, for example EEA, have been shown to be harmful to human reproduction.

[edit] Acetic anhydride

The condensation product of two molecules of acetic acid is acetic anhydride. The worldwide production of acetic anhydride is a major application, and uses approximately 25% to 30% of the global production of acetic acid. Acetic anhydride may be produced directly by methanol carbonylation bypassing the acid, and Cativa plants can be adapted for anhydride production.

Acetic anhydride is a strong acetylation agent. As such, its major application is for cellulose acetate, a synthetic textile also used for photographic film. Acetic anhydride is also a reagent for the production of aspirin, heroin, and other compounds.

[edit] Vinegar

In the form of vinegar, acetic acid solutions (typically 5% to 18% acetic acid, with the percentage usually calculated by mass) are used directly as a condiment, and also in the pickling of vegetables and other foodstuffs. Table vinegar tends to be more diluted (5% to 8% acetic acid), while commercial food pickling generally employs more concentrated solutions. The amount of acetic acid used as vinegar on a worldwide scale is not large, but historically, this is by far the oldest and most well-known application.

[edit] Use as solvent

Glacial acetic acid is an excellent polar protic solvent, as noted above. It is frequently used as a solvent for recrystallization to purify organic compounds. Pure molten acetic acid is used as a solvent in the production of terephthalic acid (TPA), the raw material for polyethylene terephthalate (PET). Although currently accounting for 5%–10% of acetic acid use worldwide, this specific application is expected to grow significantly in the next decade, as PET production increases.

Acetic acid is often used as a solvent for reactions involving carbocations, such as Friedel-Crafts alkylation. For example, one stage in the commercial manufacture of synthetic camphor involves a Wagner-Meerwein rearrangement of camphene to isoboyl acetate; here acetic acid acts both as a solvent and as a nucleophile to trap the rearranged carbocation. Acetic acid is the solvent of choice when reducing an aryl nitro-group to an aniline using palladium-on-carbon.

Glacial acetic acid is used in analytical chemistry for the estimation of weakly alkaline substances such as organic amides. Glacial acetic acid is a much weaker base than water, so the amide behaves as a strong base in this medium. It then can be titrated using a solution in glacial acetic acid of a very strong acid, such as perchloric acid.

[edit] Other applications

Dilute solutions of acetic acids are also used for their mild acidity. Examples in the household environment include the use in a stop bath during the development of photographic films, and in descaling agents to remove limescale from taps and kettles.

Dilute solutions of glacial acetic acid can be used in the clinical laboratory to lyse red blood cells in order to do manual white blood cell counts. Another clinical use is for lysing red blood cells which can obscure other important constituents in urine during a microscopic examination.

The acidity is also used for treating the sting of the box jellyfish by disabling the stinging cells of the jellyfish, preventing serious injury or death if applied immediately, and for treating outer ear infections in people in preparations such as Vosol. Equivalently, acetic acid is used as a spray-on preservative for livestock silage, to discourage bacterial and fungal growth. Glacial acetic acid is also used as a wart and verruca remover.

Organic or inorganic salts are produced from acetic acid, including:

  • Sodium acetate, used in the textile industry and as a food preservative (E262).
  • Copper(II) acetate, used as a pigment and a fungicide.
  • Aluminium acetate and iron(II) acetate—used as mordants for dyes.
  • Palladium(II) acetate, used as a catalyst for organic coupling reactions such as the Heck reaction.
  • Silver acetate, used as a pesticide.

Substituted acetic acids produced include:

  • Monochloroacetic acid (MCA), dichloroacetic acid (considered a by-product), and trichloroacetic acid. MCA is used in the manufacture of indigo dye.
  • Bromoacetic acid, which is esterified to produce the reagent ethyl bromoacetate.
  • Trifluoroacetic acid, which is a common reagent in organic synthesis.

Amounts of acetic acid used in these other applications together (apart from TPA) account for another 5%–10% of acetic acid use worldwide. These applications are, however, not expected to grow as much as TPA production.

Diluted acetic acid is also used in physical therapy to break up nodules of scar tissue via iontophoresis.

[edit] Safety

Concentrated acetic acid is corrosive and must therefore be handled with appropriate care, since it can cause skin bus, permanent eye damage, and irritation to the mucous membranes. These bus or blisters may not appear until hours after exposure. Latex gloves offer no protection, so specially resistant gloves, such as those made of nitrile rubber, should be wo when handling the compound. Concentrated acetic acid can be ignited with difficulty in the laboratory. It becomes a flammable risk if the ambient temperature exceeds 39 °C (102 °F), and can form explosive mixtures with air above this temperature (explosive limits: 5.4%–16%).

The hazards of solutions of acetic acid depend on the concentration. The following table lists the EU classification of acetic acid solutions:

Safety symbol
Concentration
by weight
MolarityClassificationR-Phrases
10%–25%1.67–4.16 mol/LIrritant (Xi)R36/38
25%–90%4.16–14.99 mol/LCorrosive (C)R34
>90%>14.99 mol/LCorrosive (C)R10, R35

Solutions at more than 25% acetic acid are handled in a fume hood because of the pungent, corrosive vapour. Dilute acetic acid, in the form of vinegar, is harmless. However, ingestion of stronger solutions is dangerous to human and animal life. It can cause severe damage to the digestive system, and a potentially lethal change in the acidity of the blood.

Due to incompatibilities, it is recommended to keep acetic acid away from chromic acid, ethylene glycol, nitric acid, perchloric acid, permanganates, peroxides and hydroxyls.

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 253 تاريخ : يکشنبه 24 آذر 1387 ساعت: 3:59

استیک اسید

اسید استیک یا جوهر انگور جز اسیدهای کربوکسیلیک است و در نامگذاری آیوپاک به اسید اتانوئیک معروف است.


نگاه کلی اسید استیک جز اسیدهای کربوکسیلیک میباشد و در نامگذاری آیوپاک به اسید اتانوئیک معروف است. این اسید دارای فرمول شیمیایی میباشد و در قسمت چشایی طعم ترشی ، شبیه طعم سرکه می‌دهد.

باکتریهای مخمر سرکه به دلیل تمایل به تولید اسید استیک به این نام معروف شدهاند. این باکتریها در مواد غذایی ، آب و خاک یافت می‌شوند. اسید استیک بطور طبیعی از میوهها و برخی مواد غذایی فاسد شده از فرایند تخمیر تولید می‌شوند و از قدیمیترین ترکیبات شیمیایی شناخته شده توسط انسان میباشد. تاریخچه سرکه (اسید استیک رقیق) از دوران باستان برای انسان شناخته شده بود. احتمالاً انسان‌ها در دوران باستان هنگام تهیه شراب از فرایند تخمیر به وجود سرکه پی برده بودند. فیلسوف یونانی تئوفاراستوس در سه قرن پیش از میلاد چگونگی واکنش سرکه با فلزات و تولید رنگدانه برای استفاده در نقاشی از کربنات سرب و زاجهای سبز ایجاد شده از نمکهای مس و استات مس را توضیح داده‌است. رومیان باستان با نگهداری شراب ترش در قدحهای سربی ، شراب بسیار شیرینی به نام Sapa تولید می‌کردند که طعم شیرین آن ناشی از استات سرب بوده‌است که امروزه دانشمندان مرگ زودرس بسیاری از اشراف روم را به مسمومیت ناشی از این ماده نسبت دادهاند. شیمیدانهای عصر رنسانس اسید استیک گلاسیال (منجمد) را از تقطیر خشک استاتهای فلزی تهیه می‌کردند. در سال ۱۸۴۷ هرمن کولب شیمیدان آلمانی برای اولین بار اسید استیک را از مواد معدنی سنتز کرد. خواص اسید استیک خالص، مایعی بیرنگ با بویی تیز، مایعی خورنده و قابل اشتعال می‌باشد. این اسید در ۱۶٫۶ درجه سانتیگراد منجمد می‌شود. به این دلیل و همچنین ظاهر یخ مانند آن به نام اسید استیک گلاسیال معروف است. اسید استیک در محلولهای آبی می‌تواند تفکیک شده و یون استات تولید کند. PH آن برابر با ۴٫۸ می‌باشد، یعنی در PH=۴٫۸ نیمی از مولکولهای اسید استیک در محلول آبی به صورت یون استات هستند. اسید استیک در حالت بخار شامل دیمرهایی از دو مولکول اسید استیک میباشد که با پیوند هیدروژنی با یکدیگر ارتباط دارند.

بنابراین اسید استیک در حالت گازی از قانون گازهای ایدهآل تبعیت نمیکند. خواص عمومی اسید استیک مانند سایر اسیدهای کربوکسیلیک می‌باشد. اسید استیک با الکلها و آمینها واکنش داده و به ترتیب تولید استرو آمید می‌کند. همچنین در اثر واکنش با آلکنها تولید استر استات می‌کند. این اسید در اثر حرارت تا دماهای بالاتر از ۴۴۰Cْ تجزیه شده و تولید و متان می‌کند. تولید سرکه از فرایند تخمیر مواد غذایی دارای نشاسته و قند و مواد الکلی توسط باکتری مخمر سرکه (بچه سرکه) تولید می‌شود. برای تولید سرکه عموماً از میوههایی مانند سیب ، انگور ، دانههایی مثل جو و گاهی هم از شراب استفاده می‌شود. سرکه معمولاً دارای اسید استیک با وزن حجمی ۴ الی ۸ درصد می‌باشد.

روشهای تولید صنعتی اسید اسیتیک

کربونیلاسیون متانول : در این روش متانول با مونوکسید کربن در فشارهای بالا (۲۰۰atm) واکنش داده و اسید استیک تولید می‌کند. این روش از سال ۱۹۲۰ ابداع شده‌است و به دلیل ارزان بودن متانول و از لحاظ اقتصادی مقرون به صرفه‌است.

اکسیداسیون بوتان : از حرارت دادن بوتان با اکسیژن هوا در حضور یونهای فلزی منگنز ، کبالت و کروم ، پروکسید تولید می‌شود. پروکسید در اثر تجزیه اسید استیک ایجاد می‌کند. { TEX()} {۲C_۴HiO + CO_۲ → ۴CH_۳COOH + ۲H_۲O} {TEX}


اکسیداسیون استالدئید : استالدئید در شرایط ملایم و در حضور کاتالیزورهای ساده فلزی مثل منگنز و کروم و... توسط اکسیژن هوا اکسید شده و اسید استیک تولید می‌کند. { TEX()} {۲CH_۳CHO + ۲O_۲ → ۲CH_۳COOH} {TEX}


محصولات جانبی تولید شده در این واکنش مانند اسید فرمیک یا استات اتیل و... به دلیل داشتن نقطه جوش پایینتر از اسید استیک توسط تقطیر جداسازی می‌شوند. کاربرد اسید استیک به صورت سرکه به عنوان چاشنی غذا و تهیه انواع ترشی استفاده می‌شود. اسید استیک رقیق به عنوان افشانه برای از بین بردن قارچهای گیاهان استفاده می‌شود. اسید استیک گلاسیال در صنایع شیمیایی در تولید فیلمهای عکاسی ، تولید پلاستیک پلیاتیلن تریفتالات (PET) استفاده می‌شود. همچنین به عنوان ماده واسطه در تولید استات وینیل که ترکیب مهمی در تولید چسب و رنگ میباشد، کاربرد دارد. برخی از استرهای اسید استیک به عنوان حلال در تولید مواد معطر مصنوعی استفاده می‌شود. نکات ایمنی اسید استیک غلیظ مادهای خورنده میباشد. در تماس با پوست باعث سوختگی شیمیایی پوست وایجاد تاول می‌شود. در صورت تماس با چشم میتواند آسیبهای جدی به چشم وارد کند، تنفس بخار غلیظ آن باعث سوزش دهان ، بینی و گلو می‌شود. هر چند سرکه یک مایع بدون ضرر میباشد اما نوشیدن اسید استیک گلاسیال خطرناک بوده و باعث ایجاد زخمهای شدید در دستگاه گوارشی می‌شود و ممکن است با تغییر اسیدیته خون آسیبهای جدی به سلامتی انسان وارد کند.

خواص فیزیکی

نام اسید استیک نام آیوپاک متان کربوکسیلیک اسید و اتانوئیکاسید وزن مولکولی ۶۰٫۰۵gr/mol نقطه ذوب ۱۶٫۵Cْ نقطه جوش ۱۱۸٫۱Cْ دانسیته ۱٫۰۵gr/cm۳


 نامگذاری

نام «اسید استیک» رایج‌ترین و رسمی‌ترین نامی است که توسط IUPAC برای این ماده بکار می‌رود. این نام از کلمه لاتین acetum، به معنی سرکه، گرفته شده‌است. «اسید اتانوئیک» که به عنوان مترادف آن بکار می‌رود، یک نام سازمان‌یافته‌است که گاهی در معرفی نامگذاری مواد شیمیایی عنوان می‌شود.

«اسید استیک منجمد» یک نام سطحی برای اسید استیک بدون آب است. مثل نام آلمانی Eisessig(که به صورت تحت‌الطفظی به معنای سرکه یخی است)، این نام، از نام کریستال‌هایی برگرفته شده که در دمای اندکی زیر ۷/۱۶ درجه سانتی‌گراد (حدود ۶۲ درجه فارنهایت) شکل می‌گیرند.

رایج‌ترین و رسمی‌ترین نام اختصاری برای اسید استیک AcOH یا HOAc است که در آن Ac مخفف گروه عاملی|گروه استیل است CH۳−C(=O)−؛ در واکنش‌های اسیدی، علامت اختصاری HAc بکار می‌رود که در آن Ac مخفف استات آنیون (CH۳COO) می‌باشد، هر چند که بسیاری این نامگذاری را گمراه کننده می‌دانند. باید توجه داشت که در حالتی دیگر نباید Ac را با مخفف عنصر شیمیایی اکتینیم اشتباه گرفت.

فرمول ساده اسید استیک CH۲O و فرمولی مولکولی آن 

C۲H۴O۲ است. حالت آخر با هدف نشان دادن بهتر ساختار، بصورت CH۳-COOH, CH۳COOH, یا CH۳CO۲H نوشته میشود. یونی که در نتیجه حذف پروتون (H+) از اسید استیک به جا می‌ماند «استات» آنیون نام دارد. همچنین نام «استات» به نمکی که حاوی این آنیون یا یک استر اسید استیک باشد اطلاق می‌گردد.


 تاریخچه

اسید استیک منجمد

قدمت سرکه به اندازه عمر تمدن و حتی بیشتر است. اسید استیک‌های باکتری‌زا در همه جای جهان وجود دارند و هر فرهنگی که در آن عمل‌آوری خمر همچون آبجو یا شراب وجود داشته، به ناچار سرکه را نیزکه نتیجه طبیعی تماس این نوشیدنی‌های الکلی با هوا بوده کشف کرده‌اند.

استفاده از اسید استیک در شیمی، به عهد باستان برمی‌گردد. در قرن سوم پیش از میلاد، تئوفراستوس فیلسوف یونانی|یونان تشریح کرد که شرکه چگونه بر روی فلزات اثر می‌کند تا از واکنش آنها رنگدانه‌های مورد استفاده در کارهای هنری تولید شوند که از آن جمله می‌توان به «سرب سفید» (کربنات سرب) و «زنگار مس» اشاره کرد که ترکیبی سبز رنگ از نمک‌های مس از جمله استات مس ۲ می‌باشد. رومیان باستان، شراب ترشیده را در ظرف‌های سربی می‌جوشاندند تا از آن یک شربت بسیار شیرین با نام «ساپا» تهیه کنند. ساپا سرشار از استات سرب بود که به آن «شکر سرب» یا «شکر (افسانه)زحل می‌گفتند و اشراف روم آنرا در مسموم‌سازی با سرب بکار می‌گرفتند. در قرن هشتم، جابر بن حیان کیمیاگر ایرانی از طریق تقطیر اسید استیک را از سرکه جدا کرد.

در دوران رنسانس، اسید استیک منجمد از طریق تقطیر خشک استات‌های فلزی تهیه می‌شد. در قرن شانزدهم، آندریاس لیباویوس کیمیاگر آلمانی چنین رویه‌ای را تشریح کرد و اسید استیک منجمد حاصل از این روش را با سرکه مقایسه کرد. وجود آب در سرکه بر ویژگیهای اسید استیک چنان تاثیر عمیقی داشت که شیمیدانها تا قرن‌ها معتقد بودند که اسید استیک منجمد و اسیدی که در سرکه یافت می‌شود دو ماده مختلف هستند. پیر آدت شیمیدان فرانسوی ثابت کرد که این دو در حقیقت یکی هستند.

در سال ۱۸۴۷، هرمان کولب شیمیدان آلمانی برای اولین بار از طریق مواد معدنی موفق به ساخت اسید استیک شد. ترتیب این واکنش عبارت بود از کلردار کردن دی سولفید کربن و تبدیل آن به تترا کلراید کربن، سپس از طریق تفکافتبه تتراکلورو اتیلن و از طریق کلردار کردن آبی به اسید تری کلرواستیک و در نهایت کاهش آن از طریق برقکافت به اسید استیک.

 

کریستال‌های اسید استیک

تا سال ۱۹۱۰، ایسد استیک منجمد اغلب از «تقطیر مشروبات الکلی» یا تقطیر چوب بدست می‌آمد. با استفاده از هیدروکسید کلسیم را جدا می‌کردند؛ سپس استات کلسیم به جا مانده را با استفاده ازاسید سولفوریک اسیدی می‌کردند تا از آن اسید استیک بدست آید. در همین زمان، آلمان ۱۰٫۰۰۰ تن اسید استیک منجمد تولید می‌کرد که ۳۰درصد از آن برای تولید رنگ نیل استفاده می‌شد.

 خواص شیمیایی

؛قدرت اسیدی اتم هیدروژن (H) در گروه کربوکسیل (−COOH) دراسیدهای کربوکسیلیک همچون اسید استیک، می‌تواند به عنوان یک یون (پروتون) H+ آزاد شود و به آنها خاصیت اسیدی دهد. اسید استیک در محلول‌های آبی یک اسید تک‌پروتونی موثر است با ارزش ثابت تفکیک اسیدی(pKa) آن   ۰/ ۱ A ۸/۴; pH مولاریته محلول آن (در حدود انسجام سرکه خانگی) ۴/۲ است که نشان می‌دهد ۴/۰ درصد از مولکول‌های اسید استیک تفکیک یافته‌اند.

دی مر چرخه‌ای اسید استیک; خطوط تیره نشاندهنده پیوندهای هیدروژنی هستند

ساختار کریستالی اسید استیک [۴] نشان می‌دهد که مولکول‌ها به صورت دی مر جفت می‌شوند که پیوندهای هیدروژنی آنها را به هم متصل کرده‌است. دی مرها را می‌توان در بخار  ۱۲۰درجه سانتی گراد شناسایی کرد. این حالت ممکن است در فاز مایع اسید استیک خالص نیز رخ دهد اما در صورت وجود آب، به سرعت به هم می‌ریزد. سایر اسیدهای کربوکسیلیک پایین‌تر نیز این رفتار دی‌مرسازی را دارند.

؛ حلال

اسید استیک مایع، مانند آب و اتانول یک حلال پروتون‌دار آبدوست (مولکول قطبی|قطبی) است. این ماده با ثابت دی الکتریک ۲/۶ ، می‌تواند علاوه بر حل کردن ترکیبات قطبی همچون نمک‌های معدنی و شکرها، ترکیبات غیر قطبی همچون روغن‌ها و عناصر شیمیایی مثل سولفور و آیودین را در خود حل کند. این ماده با بسیاری از حلالهای قطبی و غیر قطبی همچون آب، کلروفورم و هگزان مخلوط می‌شود. این خاصیت انحلال و امتزاج‌پذیری اسید استیک آنرا به یک ماده شیمیایی پرکاربرد صنعتی تبدیل کرده‌است.

؛ واکنش‌های شیمیایی

اسید استیک برای بسیاری از فلزات از جمله آهن، منیزیم و روی خاصیت خورندگی دارد و در واکنش با آنها، گاز هیروژن و نمک‌های فلزی به نام استاتها تولید می‌کند. با قرار گرفتن آلومنیم در معرض اکسیژن، یک لایه نازک از اکسید آلومنیم بر روی سطح آن ایجاد می‌شود که نسبتا مقاوم است. در نتیجه تانکرهای الومنیمی در حمل‌ونقل اسید استیک مورد استفاده قرار می‌گیرند. استات‌های فلزی را می‌توان از واکنش اسید استیک با یک باز نیز بدست آورد؛ که نمونه مشهور آن واکنش « جوش شیرین = سرکه» می‌باشد. به جز استات کرومیم ۲، تقریبا کلیه استات‌ها در آب قابل حل هستند.

دو واکنش آلی اسید استیک

واکنش‌های شیمیاییعادی یک اسد کربوکسیلیک در مورد اسید استیک اتفاق می‌افتد که تشکیل اتانول از طریق کاهش و تشکیل مشتقاتی همچون کلرید استیل از طریق استخلاف هسته‌دوست اسیل، از موارد قابل توجه آن هستند. دیگر مشتقات استخلافی عبارتند از آنیدریدهای استیک؛ این آنیدرید از طریق از دست دادن آب در دو مولکول اسید استیک رخ می‌دهد. به همین ترتیب، استرهای اسید استیک می‌توانند از طریق استری کردن فیشری تشکیل شوند و آمیدها نیز به همین ترتیب بوجود آیند. در صورتیکه اسید استیک در معرض حرارت بالای  ۴۴۰ درجه سانتی‌گراد قرار گیرد، تجزیه شده و از آن دی اکسید کربن و متان یا کتن و آب تولید می‌شود.

؛ شناسایی

اسید استیک را می‌توان از طریق بوی خاص آن شناخت. یک واکنش رنگی برای نمک‌های اسید استیک محلول کلرید آهن ۳ است که رنگ قرمز سیر ایجاد می‌کند که پس از اسیدی‌سازی ناپدید می‌شوداستات‌ها وقتی با تری اکسید آرسنیک از اکسید کاکودیل حرارت داده می‌شوند، از طریق بوی بدی که تولید می‌کنند قابل شناسایی هستند.

 بیوشیمی

گروه عامل|گروه استیل، که از اسید استیک مشتق شده‌اند تقریبا در بیوشیمی کلیه گونه‌های حیات نقشی بنیادین دارند. آنها در مجاورت با کوآنزیم A به مهم‌ترین قسمت متابولیسم کربوهیدراتها و چربیها تبدیل می‌شوند. در عین حال، به خاطرجلوگیری از برهم خوردن کنترل pH محتویات سلولی، تجمع اسید استیک‌های آزاد در سلول‌ها در سطوح پایین حفظ می‌شود. برخلاف اسیدهای کربوکسیلیک با زنجیره بلندتر(اسیدهای چرب)، اسید استیک در تری گلیسریدهای طبیعی بوجود نمی‌آید. در عین حال، تری گلیسیرید مصنوعی تری استین (گلیسیرین تری استات) یک افزودنی غذایی متداول است و در مواد آرایشی و داروهای موضعی بکار گرفته می‌شوند.

اسید استیک توسط برخی میکروب‌های گیاهی تولید و دفع|مدفوع می‌شوند که از مهمترین آنها می‌توان به دسته «بچه سرکه» و کلوستریدیم استو بیتی لیکیوم اشاره کرد. این باکتری‌ها در همه جا در مواد غذایی، آب و خاک یافت می‌شوند و با گندیدن میوه‌ها و سایر غذاها، اسید استیک بطور طبیعی تولید می‌شود. اسید استیک همچنین یکی از ترکیبات لیزکننده مهبلی آدمیزاد و سایر پستانداران نخستی است و در آنجا به عنوان یک عامل ضد باکتری ملایم عمل می‌کند. [۵]

 تولید

کارخانه تصفیه و تغلیظ اسید استیک در سال 1884

اسید استیک، هم بطور مصنوعی و هم از طریق تخمیر باکتریایی، تولید می‌شود. امروزه روش باکتریایی تنها ۱۰ درصد از تولید را به خود اختصاص داده‌است اما به دلیل اینکه قوانین جهانی مربوط به سلامت غذا بر تهیه سرکه خوراکی از مواد بیولوژیکی تاکید می‌کند، این روش همچنان برای تولید سرکه استفاده می‌شود. تقریبا حدود ۷۵ درصد از اسید استیک تولید شده برای استفاده‌های صنعتی، از کربندار کردن متانول و به روشی که در زیر می‌آید تولید می‌شود. برای بقیه مصارف، از روش‌های دیگر استفاده می‌شود. [۶]

کل تولید جهانی اسید استیک   ۵ میلیون تن در سال برآورد می‌شود که نیمی از آن درایالات متحده تولید می‌شود. تولید این ماده در اروپا  ۱ میلیون تن در سال است که میزان آن رو به کاهش نهاده؛ در ژاپن نیز تولید این ماده  ۷/۰ میلیون تن در سال است. از سوی دیگر هرسالانه  ۵/۱ میلیون تن اسید استیک بازیافت می‌شود که تولید جهانی را به  ۵/۶ میلیون تن در سال می‌رساند. [۷][۸]

بزرگترین تولیدکنندگان اسید استیک دست نخورده، سلانس و بی‌پی|صنایع شیمیایی بی پی هستند. از دیگر تولیدکنندگان عمده این ماده می‌توان به ملنیوم کمیکالز، استرلینگ کمیکالز، سام سونگ، ایستمن و سوونسک اتانول کمی اشاره کرد.

کربندارکردن متانول

بیشتر اسید استیک جهان به روش کربندار کردن متانول تولید می‌شود. در این فرایند، متانول و مونو اکسید کربن با یکدیگر واکنش می‌دهند تا بر اساس معدله شیمیایی زیر اسید استیک تولید شود:

متانول|CH۳OH+مونواکسید کربن |CO→ CH۳COOH

این فرایند که در آن یودو متان به عنوان میانجی مورد استفاده قرار می‌گیرد، در سه مرحله اتفاق می‌افتد. یک کاتالیزور که عمدتا یک کمپلکس است برای کربندار کردن مورد استفاده نیاز است. (گام ۲)

(۱)CH۳OH+ یودید هیدروژن|HI→یودومتان|CH۳I + H۲O
(۲) CH۳I + مونواکسیدکربن |CO → CH۳COI
(۳) CH۳COI + H۲O → CH۳COOH + HI

با تغییر شرایط فرایند، می‌توان در همان کارخانه آنیدرید استیک تولید کرد. از آنجاکه هم متانول و هم مونواکسیدکربن مواد خام مناسبی هستند، کربندارکردن متانول از درباز به عنوان یکی از بهترین روشها برای تولید اسید استیک به شمار می‌آمده‌است. در سال ۱۹۲۵، هنری درفیوس از سلانس بریتانیا یک کارخانه موازی کربندارکردن متانول را تاسیس کرد. [۹] با این حال نبود مواد کاربردی که بتوانند در فشارهای بالای مورد نیاز (۲۰۰ (واحد)اتمسفر یا بیشتر) حاوی مخلوط‌‌های واکنشی خورنده باشند، باعث شد برای مدتی تمایل به تجاری‌سازی این روش‌ها از بین برود.

اولین فرایند تجاری کربندارکردن متانول که در آن از کوبالت به عنوان کاتالیزور استفاده می‌شد، در سال ۱۹۶۳ توسط شرکت صنایع شیمیایی BASF انجام گرفت. در سال ۱۹۶۸، یک کاتالیزور رودیومی (cis−[Rh(CO)۲I۲]) که می‌توانست در فشارهای پایین بدون تولید هیچ فراورده جانبی عمل کند کشف شد. اولین کارخانه‌ای که از این روش استفاده کرد، در سال ۱۹۷۰ توسط شرکت صنایع شیمیایی مونسانتو امریکا ساخته شد و از آن پس، کربندارکردن متانول با کاتالیزور رودیومی به روش غالب در تولید اسید استیک تبدیل شد. (همچنین رجوع کنید بهفرایند مونساتو). در اواخر دهه نود، شرکت صنایع شیمیایی بی‌پی استفاده تجاری از کاتالیزور کاتیوا ([Ir(CO)۲I۲]) را که بوسیله روتنیم ارتقا یافته بود آغاز کرد. این فرایند که کاتالیزور آن ایریدیوم است طبیعت‌دوست‌تر و کارآمدتر است[۱۰] و تا حد زیادی جای فرایند مونسانتو را در همان کارخانه گرفته‌است.

اکسایش استالدئید

پیش از تجاری شدن روش مونسانتو، بیشتر اسید استیک از طریق اکسایش استالدئید تولید می‌شد. این روش به عنوان دومین روش مهم تولید پابرجا مانده‌است، هر چند که کربندارکردن متانول در آن، چندان مقرون به صرفه نیست. استالدئید را می‌توان از طریق اکسایش بوتان یا نفتا یا آبدار کردن اتیلن بدست آورد.

وقتی بوتان یا نفتای سبک در مجاورت یونهای مختلف فلزی از جمله یونهای منگنز، کوبالت، کرومیوم، پروکسید حرارت می‌بینند تجزیه می‌شوند تا براساس معادله شیمیایی زیراسید استیک تولید کنند.

۲ بوتان|C۴H۱۰ + ۵ اکسیژن|O۲ → ۴ CH۳COOH + ۲ آب|H۲O

معمولا، این واکنش در تلفیقی از حرارت و فشاری انجام می‌شود که در عین نگهداری بوتان در حالت مایع، دما را تا حد ممکن بالا نگه دارد. شرایط واکنشی معمولا در دمای  ۱۵۰ درجه سانتی‌گراد و فشار   اتمسفر ۵۵ قرار دارد. ممکن است در این میان چند فراورده جانبی نیز تولید شوند از جمله بوتانون، استات اتیل، اسید فورمیک و اسید پروپونیک. این فراورده‌های جانبی از لحاظ تجاری با ارزش هستند و در صورتیکه از لحاظ اقتصادی مورد نیاز باشند، شرایط واکنش را تغییر می.دهند تا مقادیر بیشتری از این فراورده‌ها بدست آید. در عین حال جداسازی اسید استیک از این فراورده‌های جانبی ممکن است هزینه‌های فرایند را افزایش دهد.

تحت شرایط مشابه و با استفاده از کاتالیزورهای یکسان، همانگونه که در اکسایش بوتان صورت می‌گیرد، می‌توان در هوا، استالدئید را برای تولید اسید استیک، توسط اکسیژن اکسید کرد.

۲ استالدئید|CH۳CHO + اکسیژن|O۲ → ۲ CH۳COOH

با استفاده از کاتالیزورهای جدید، می‌توان از این واکنش بیش از ۹۵ درصد اسید استیک بدست آورد. فراورده‌های جانبی این واکنش عبارتند از استات اتیل، اسید فورمیک و فورمالدئید که همه آنها نسبت به اسید استیک نقطه جوش پایینتری داشته و به راحتی می‌توان از طریق تقطیر آنها را جداسازی کرد.

اکسایش اتیلن

تخمیر

؛ تخمیر اکسایشی

در بیشتر تاریخ بشری، اسید استیک در حالت سرکه، توسط گروه باکتریایی «بچه سرکه» ساخته می‌شده‌است. درصورت وجود اکسیژن کافی، این باکتری می‌تواند از انواع مختلف مواد غذایی الکل‌دار، سرکه تولید کند. شاخص‌ترین این غذاها عبارتند از آب سیب، شراب و مخمر غلات|حبوبات، مالت، برنج، یا مالت سیب‌زمینی. کلیت واکنش شیمیایی‌ای که توسط این باکتری تسهیل می‌شود عبارتست از

اتانول|C۲H۵OH + اکسیژن|O۲ → CH۳COOH + آب|H۲O

محلول رقیق الکل که با «مخمر سرکه» آغشته شده باشد، در یک محیط گرم هوادار، طی چند ماه به سرکه تبدیل می‌شود. روش‌های صنعتی تولید سرکه، با افزایش تامین اکسیژن برای باکتری، این فرایند را تسریع می‌کنند.

احتمالا اولین سرکه‌ها ، در پی اشتباه در فرایند شراب‌گیری تولید شده‌اند. اگر فراین تخمیر در حرارت بالا انجام گیرد، بچه سرکه بطور طبیعی مخمر انگور را می‌پوشاند. با افزایش تقاضای سرکه برای مصارف آشپزی، پزشکی و بهداشتی، شراب‌فروشان خیلی سریع یاد گرفتند تا چگونه در ماههای گرم پیش از آنکه انگورها برای تبدیل به شراب به اندازه کافی برسند، سایر مواد آلی را برای تولید سرکه مورد استفاده قرار دهند. از آنجا که شراب‌فروشان از چگونگی این فرایند آگاهی لازم را نداشتند، این روش کند و گاهی ناموفق بود.

یکی از اولین روشهای مدرن «روش سریع» یا «روش آلمانی» است که برای اولین بار در سال ۱۸۲۳ در آلمان بکار گرفته شد. در این فرایند، تخمیر در یک برج بسته‌بندی شده با تراشه‌های چوب یا زغال چوب صورت می‌گیرد. غذای الکل‌داراز بالای برج پاشیده می‌شود و اتمسفر زمین|هوای تازه یا بطور طبیعی یا بصورت تبادل حرارت اجباری از پایین تامین می‌شود. در این فرایند، تامین بهتر هوا، زمان تهیه سرکه را از چند ماه به چند هفته کاهش می‌دهد.

امروزه بیشتر سرکه‌ها در تانکرهای کشت میکروبیولوژیکی|کشت که در زیر آب غوطه‌ور هستند تهیه می‌شوند. این روش برای اولین باردر سال ۱۹۴۹ توسط اوتو هروماتکا و هنریخ ابنر ابداع شد. در این روش، الکل در یک تانکر که بطور مداوم محتویات آن به هم می‌خورد، به سرکه تخمیر می‌شود و اکسیژن نیز از طریق عبور حباب‌های هوا از درون محلول تامین می‌شود.

؛ تخمیر بدون اکسیژن

برخی گونه‌های باکتری‌های بی‌هوازی از جمله چندین نوع از دسته «کلاستریدیوم» قادرند بطور مستقیم و بدون استفاده از اتانول به عنوان میانجی، شکرها را به اسید استیک تبدیل کنند. کلیت واکنش شیمیایی که توسط این باکتری انجام می‌شود عبارتست از:

گلوکوز|C۶H۱۲O۶ → ۳ CH۳COOH

جالبتر اینکه، از نظر شیمیدانان صنعتی، این باکتری‌های بی‌هوازی| بی‌هوازی‌ها می‌توانند اسید استیک را از ترکیبات تک کربنی نظیر متانول، مونواکسیدکربن یا مخلوط دی‌اکسید کربن وهیدروژن تولید کنند:

۲دی‌اکسید کربن |CO۲+۴هیدروژن|H۲→ CH۳COOH + ۲ آب|H۲O

توانایی «کلوستریدیوم» دربکارگیری مستقیم شکر، یا تولید اسید استیک از مواد کم هزینه‌تر بدین معناست که این نوع از باکتری‌ بطور بالقوه می‌تواند نسبت به اکسایندگان اتانول نظیر «بچه سرکه»، در تولید اسید استیک کارآمدتر باشد. با این حال، باکتری «کلاستریدیوم» نسبت به «بچه سرکه» در مقابل اسید مقاومت کمتری دارد. حتی در مقایسه با برخی انواع بچه سرکه که می‌توانند با غلط ۲۰ درصدی اسید استیک سرکه تولید کنند، مقاوم‌ترین انواع «کلاستریدیوم» تنها می‌توانند چند درصد اسید استیک در سرکه تولید کنند. در حال حاضر برای تولید سرکه، استفاده از «بچه سرکه» نسبت به استفاده از «کلاستریدیوم» و سپس تغلیظ آن، مقرون به صرفه‌تر است. در نتیجه با وجودیکه باکتریهای استوژنیک از سال ۱۹۴۰ کشف شده‌اند استفاده صنعتی از آنها به تعدادی کاربرد بی خطر محدود شده‌است.

 کاربردها

بتری 5/2 لیتری اسید استیک در آزمایشگاه

تولید بسیاری از بسیاری از ترکیبات شیمیایی، اسید استیک به عنوان یک واکنشگر شیمیایی به کار می‌آید. مهمترین کاربرد خاص اسید استیک در تولید استات وینیل تکپاره‌است، که بلافاصله پس از آن آنیدرید استیک و استر تولید می‌شود. میزان اسید استیک مورد استفاده در سرکه به نسبت اندک است.

 استات وینیل تکپاره

کاربرد اصلی اسید استیک در تولید استات وینیل تکپاره (VAM) است. بین ۴۰ تا ۴۵ درصد از اسید استیک تولید شده در جهان، به مصرف این کاربرد می‌رسد. این واکنش که کاتالیزور آن پالادیوم است، اتیلن، اسید استیک و اکسیژن تولید می‌کند.

۲ H۳C-COOH + ۲ اتیلن|C۲H۴ + اکسیژن|O۲ → ۲ استات وینیل |H۳C-CO-O-CH=CH۲ + ۲ آب (مولکول)|H۲O

استات وینیل می‌تواند به استات پلی وینیل یا سایر پولیمرها، پولیمریزه شود که این مواد در رنگها و چسبها کاربرد دارند.

 آنیدرید استیک

محصول مایع‌سازی دو مولکول اسید استیکآنیدرید استیک است. تولید جهانی آنیدرید استیک اصلی‌ترین کاربرد است که بین ۲۰ تا ۳۰ درصد از تولید اسید استیک در جهان را به مصرف خود می‌رساند. آنیدرید استیک را می‌توان بطور مستقیم از #کربندار کردن متانول|کربندار کردن متانول در مجاورت اسید تولید کرد و می‌توان کارخانه‌های کاتیوا| فرایند کاتیوا را برای تولید آنیدرید تطبیق داد.

متراکم‌سازی اسید استیک به آنیدرید استیک

آنیدرید استیک، یک عامل قوی اسیددار کردن است. با داشتن چنین خاصیتی، کاربرد اصلی آن در تولید [ترموپلاستیک سلولزی است که به عنوان یک بافت مصنوعی در فیلم عکاسی بکار می‌رود. همچنین آنیدرید اسید در تولید آسپرین، هرویین و سایر ترکیبات به عنوان واکنشگر عمل می‌کند.


سرکه

در حالت سرکه و نیز در نمک‌سود کردن سایر سبزیجات، محلول‌های اسید استیکی (معمولا ۵ تا ۱۸ درصد اسید استیک، با درصدی که معمولا بر حسب جرم محاسبه می‌شود) بطور مستقیم به عنوان یک چاشنی مورد استفاده قرار می‌گیرند. سرکه خانگی اغلب رقیق‌تر است (۵ تا ۸ درصد اسید استیک)، ولی در نمک‌سود کردن غذاها برای مصارف تجاری، محلول‌های غلیظ تری مورد استفاده قرار می‌گیرد. میزان اسید استیکی که در سطح جهانی برای تولید سرکه مورد استفاده قرار می‌گیرد زیاد نیست اما از دیر باز این ماده یکی از پر کاربردترین مواد در تولید سرکه بوده‌است.

 کاربرد به عنوان حلال

همانگونه که گفته شداسید استیک# خواص شیمیایی|بالا ، اسید استیک منجمد یک حلال پروتون‌دار قطبی بسیار عالی است. این ماده اغلب در تصفیه مواد آلی به عنوان حلال کریستال‌سازی مجدد بکار می‌رود. اسید استیک ذوب شده خالص در تولید اسید ترفتالیک که ماده خام پلی اتیلن ترفتالیک (PET)است، به عنوان حلال بکار می‌رود. اگر چه در حال حاضر این کاربرد ۵ تا ۱۰ درصد از اسید استیک تولید شده در جهان را مصرف می‌کند، با افزایش تولید PET انتظار می‌رود این کاربرد افزایش بیشتری پیدا کند.

در واکنش‌هایی همچون فریدل کرافتس# اکلیل‌دار کردن فریدل کرافتس| اکلیل‌دار کردن فریدل کرافتس که در آنها کربوکاتیون وجود دارد، اسید استیک به عنوان یک حلال بکار می‌رود. به عنوان مثال، یک مرحله از تولید تجاریکافور مصنوعی، شامل نوآرایی ونگر میروین کمفین به استات ایزوبورنیل است؛ در این حالت اسید استیک برای حفظ کربندار کردنواکنش نوآرایی|بازآراسته، هم به عنوان حلال و هم به عنوان یک هسته دوست عمل می‌کند. در هنگام کاهش|اکسایش یک گروه نیترو آریل به یک آنیلین با استفاده از پالادیوم کربنی، اسید استیک به عنوان حلال انتخابی استفاده می‌شود.

در شیمی تحلیلی، اسید استیک منجمد برای تخمین مواد قلیایی ضعیف همچون آمیدهای آلی بکار می‌رود. اسید استیک منجمد به عنوان باز (شیمی)| باز از آب هم ضعیف‌تر است در نتیجه در این میانجی، آمید به عنوان یک باز قوی عمل می‌کند. سپس با استفاده از یک محلول در اسید استیک منجمد با خاصیت اسیدی بسیار قوی همچون اسید پرکلورید، می‌توان عیار آنرا اندازه گرفت.

 سایر کاربردها

محلول‌های رقیق اسید استیک، همچنین به خاطر خاصیت اسیدی ملایم آنها، مورد استفاده قرار می‌گیرند. در محیط خانگی، استفاده در آبگونه اسیدی ظهور فیلم و برداشتن جرم شیرآب و کتری از نمونه‌های آن است. خاصیت اسیدی همچنین از طریق سلولهای نیش ستاره دریایی، در درمان نیش ستاره دریایی جعبه‌ای استفاده می‌شود که این کار از آسیبهای جدی و یا حتی مرگ جلوگیری می‌کند. این خاصیت همچنین در درمان افراد مبتلا به آماس گوش| عفونت گوش خارجی به کار می.رود. همچنین در سیلوی خوراک دام، برای جلوگیری از رشد باکتری‌ها و قارچها، بصورت اسپری از اسید استیک استفاده می‌شود.

از اسید استیک چندین نمک آلی و غیر آلی تولید می‌شود، از جمله:

  • استات سدیم__ در صنعت نساجی و نیز به عنوان نگهدارنده غذایی (E number|E۲۶۲).
  • استات مس ۲__ به عنوان رنگدانه و قراچ‌کش
  • استات آلومنیم و استات آهن ۲__ به عنوان ثابت‌کننده رنگ
  • استات پلادیوم ۲__ به عنوان کاتالیزور در واکنش‌های جفت‌ساز، همچون واکنش هک

اسید استیک‌های جایگزین تولید شده عبارتند از:

  • اسید مونوکلرواستیک. MCA، اسید دیکلرو استیک (به عنوان محصول فرعی) و تری کلرواستیک. MCA در تولید رنگ نیل استفاده می‌شود.
  • اسید برومو استیک، که برای تولید واکنشگر برومو استات اتیل استری می‌شود.
  • اسید تری فلوئورواستیک که در ترکیبات عالی، یک واکنشگر رایج است.

مقادیر اسید استیکی که در سایر کاربردها بکار می‌رود (بجز TPA)، ۵ تا ۱۰ درصد از اسید استیک مورد استفاده درسطح جهان را به خود اختصاص داده‌است. در عین حال، انتظار نمی‌رود این کاربردها به اندازه تولیدTPA ، رشد کند.

 ایمنی

اسید استیک غلیظ خورنده‌است و در نتیجه باید با احتیاط با آن کار کرد، زیرا باعث سوختگی، آسیبهای دائم چشمی و سوزش اعضای دارای مایعات مخاطی می‌شود. این تاول‌ها و آبله‌ها ممکن است تا چند ساعت پس از در معرض قرار گرفتن پدیدار نشوند. به هنگام کار کردن با این ترکیب‌ها باید از دستکش‌های مقاوم از جنس پلاستیک نیتریل استفاده کرد چراکه استفاده ازدستکش‌های لاتکس از ایمنی لازم برخوردار نیست. اسید استیک غلیظ در شرایط آزمایشگاهی به سختی مشتعل می‌شود. با بالا رفتن دما از مرز ۳۹ درجه سانتی‌گراد، ریسک تبدیل شدن آن به یک ماده منفجره در مجاورت هوا افزایش می‌یابد. (حد انفجار: ۴/۵ درصد تا ۱۶ درصد).

خطر محلولهای اسید استیک به میزان غلظت آن بستگی دارد. محلولهایی که اسید استیک آنها بیش از ۲۵ درصد است، به خاطر بوی زننده و بخار خورنده آنها در هود بخار نگهداری می‌شود. اسید استیک رقیق به شکل سرکه بی ضرر است. با اینحال وارد کردن محلول‌های قویتر در آن، برای انسان و حیوانات ضرر دارد. این محلول به سیستم گوارش آسیب زده و تغییری مهلک را در خاصیت اسیدی خون ایجاد می‌کند.

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 278 تاريخ : يکشنبه 24 آذر 1387 ساعت: 3:55

اسید فرمیک (جوهر مورچه) یا متانوئیک اسید، ساده‌ترین عضو گروه کربوکسیلیک اسیدها است. فرمول شیمیایی آن HCOOH بوده و در طبیعت در نیش حشراتی مانند مورچه و زنبور یافت می‌شود. همچنین ترکیب عمده، ماده گزش‌زا در برگ گزنه‌است. ریشه لغوی فرمیک اسید از نام لاتینی مورچه (Formica) گرفته شده‌است. زیرا این ترکیب اولین بار از تقطیر تخریبی مورچه بدست آمد.

تاریخچه

در سده ۱۵ شیمیدانها و دانشمندان علوم طبیعی می‌دانستند که از تجمع مورچه‌ها بخارهای اسیدی متصاعد می‌شود. اولین بار جان ری طبیعت شناس انگلیسی در سال ۱۶۷۱ این اسید را از تقطیر توده‌ای از مورچه‌های مرده، جدا کرد. اما سنتز شیمیایی آن اولین بار توسط شیمیدان فرانسوی ژوزف گیلوساک از اسید هیدروسیانیک انجام گرفت. در سال ۱۸۵۵ شیمیدان فرانسوی دیگری به نام Marcellin berthelot اسید فرمیک را با استفاده از مونواکسید کربن سنتز کرد، شبیه روشی که امروزه مورد استفاده قرار می‌گیرد.

[ویرایش] خواص عمومی اسید

اسید فرمیک به خوبی با آب و بیشتر حلالهای آلی قطبی مخلوط می‌شود. در هیدروکربنها هم تا حدی حل می‌شود. اسید فرمیک در فاز گازی و در هیدروکرینها به صورت دیمرهایی است که با پیوند هیدروژنی به هم متصل شده‌اند. در فاز گازی پیوند هیدروژنی میان مولکولهای اسید فرمیک باعث انحراف از قانون گازهای ایده‌آل می‌شود. اسید فرمیک در حالت مایع و جامد شامل شبکه‌ای نامحدود از مولکولهایی است که با پیوند هیدروژنی به هم متصل هستند. بیشتر خواص اسید فرمیک همانند خواص سایر اسیدهای کربوکسیلیک می‌باشد اما آن نمی‌تواند آسیل کلرید ایجاد کند.

در صورت تشکیل هریک ازاین ترکیبات، تجزیه شده و مونواکسید کربن ایجاد می‌کنند. حرارت دادن اسید فرمیک باعث تجزیه آن بر Co می‌شود. اسید فرمیک به آسانی احیاء شده و به فرمالدئید تبدیل می‌شود. اسید فرمیک تنها کربوکسیلیک اسیدی است که توانایی شرکت در واکنشهای افزایشی به همراه آلکنها را دارد. اسید فرمیک و آلکنها به آسانی باهم واکنش داده و استرهای فرمات ایجاد می‌کنند. اسید فرمیک در حضور اسید سولفوریک و هیدروفلوئوریک اسید، در واکنش کخ شرکت کرده و اسیدهای کربوکسیلیک بزرگ‌تر ایجاد می‌کند.

خواص فیزیکی اسید فرمیک

نام آیوپاک نام متداول فرمول شیمیایی وزن مولکولی دمای ذوب دمای جوش دانسیته PKa متانوئیک اسید اسیدفرمیک HCOOH ۴۶٫۰۳ ۸٫۴° ۱۰۰٫۸° ۱٫۲۲gr/Cm۳ ۳٫۷۵


[ویرایش] روش تولید

در صنعت تولید ترکیبات شیمیایی، فرمیک اسید به مدت طولانی به عنوان ترکیبی که بهره وری کمتری را داراست، تلقی می‌شد. قسمت عمده اسید فرمیک به عنوان محصول فرعی در تولید سایر ترکیبات شیمایی، بویژه اسید استیک تولید می‌شود. اما با روند رو به رشد استفاده آن در مواد نگهدارنده و آنتی باکتریال در غذای دام، امروزه در صنعت به این منظور تولید می‌شود.

وقتی متانول و مونواکسید کربن در حضور یک باز قوی مانند منواکسید سدیم باهم واکنش می‌دهند، مشتقی از اسید فرمیک به نام متیل فرمات تولید می‌شود. این واکنش در فاز مایع در دمای درجه سانتیگراد و فشار ۴۰atm انجام می‌شود. از آبکافت (هیدرولیز) متیل فرمات، اسید فرمیک ایجاد می‌شود.

[ویرایش] کاربرد ویژه

اسید فرمیک بیشتر به عنوان نگهدارنده (جلوگیری از فاسد شدن) و آنتی باکتریال در غذای دام استفاده می‌شود. پاشیدن مقداری از آن روی علف تازه خشک شده از فساد و پوسیدگی آن جلوگیری کرده و مواد مغذی آن را تا حد بالایی حفظ می‌کند. برای جلوگیری از فساد غذای زمستانی دامها در مجتمعهای بزرگ دامداری از این ماده استفاده می‌شود.

اسید فرمیک در مرغداریها برای از بین بردن باکتری سالمونلا به غذای مرغها اضافه می‌شود. این ترکیب همچنین به مقدار ناچیز در صنعت نساجی و دباغی استفاده می‌شود. برخی از مشتقات آن مانند استرهای فرمات در صنعت خوشبوکننده‌ها مورد استفاده قرار می‌گیرند.

ایمنی بیشترین خطر فرمیک اسید در تماس پوست یا چشم با مایع یا بخار غلیظ آن است. تماس پوست با مایع یا بخار آن باعث سوختگی شیمیایی و در صورت تماس با چشم ممکن است باعث ایجاد آسیبهای دائمی در چشم شود. تنفس بخار آن موجب تحریک و سوزش دستگاه نفسی می‌شود. از آنجا که ممکن است مقادیری CO در بخار اسید فرمیک موجود باشد باید در نگهداری، حمل و نقل و استفاده از آن نکات ایمنی کاملاً رعایت شود.

سازمان غذا و داروی آمریکا مقدار مجاز، بخار اسید فرمیک در هوای محیط کار را ۵ppm اعلام کرده‌است. اسید فرمیک به آسانی متابولیزه شده و از بدن دفع می‌شود. اما با این همه قرار گرفتن مداوم در معرض آن باعث ایجاد عوارض مزمن مثل ایجاد حساسیتهای پوستی می‌شود. آزمایش روی حیوانات آزمایشگاهی نشان می‌دهد که قرار گرفتن طولانی در معرض اسید فرمیک باعث ایجاد جهش ژنی و آسیبهای کلیوی و کبدی می‌شود.

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 278 تاريخ : يکشنبه 24 آذر 1387 ساعت: 3:48

کربوکسیلیک اسیدها دسته ای از ترکیب های آلی هستند که یک یا چند گروه عاملی کربوکسیل«COOH-» در آن ها یافت می شود.متانوییک اسید HCOOH ساده ترین و اتانوییک اسیدCH3COOH آشناترین آن هاست.کربوکسیلیک اسیدهای سبک (حداکثر تا چهار اتم کربن)به خوبی در آب حل می شودولی با افزایش طول زنجیره کربنی از انحلال پذیری آن ها در آب کم می شودبه طوری که بسیاری از آن ها در عمل در آب نا محلولند.کربوکسیلیک اسیدها اسید های ضعیفی هستند و بر اثر حل شدن در آب تعدادی از مولکول های آن ها پروتون اسیدی خود را به مولکول های آب می دهندو به سرعت به حالت تعادل می رسند.

این اسیدها یک،دو یا چند عاملی هستند که به اسید های آلی چند عاملی پلی الکترولیک می گویند.

  • چند نمونه کربوکسیلیک اسید
    • فرمیک اسید (جوهر مورچه)
    • استیک اسید (سرکه)
    • پروپانوئیک اسید
    • بوتانوئیک اسید
    • دی اتانوئیک اسید (اگزالیک اسید)
    • سوکسینیک اسید
    • آبیتیک اسید

نام گذاری به روش کهن

در این روش از نامی که از دیر باز برای آن به کارمی رفته بهره می جویند. مانند :استیک اسید.

این روش امروزه با وجود شمار فراوان ترکیب های آلی کم کاربرد تر شده ولی هنوز در کاربردهای تجاری از همین روش بهره می گیرند.

نام گذاری به روش آیوپاک

  • برای نام گذاریاسید های تک عاملی به ته نام آلکان پسوند «اوئیک» افزوده شده و سپس نام اسید آورده می شود. مانند: «متانوئیک اسید»
  • برای نام گذاری اسیدهای دو عاملی افزون بر افزودن «اوئیک اسید» به ته نام آلکان پیشوند «دی» نیز به آغاز نام اسید افزوده می شود. مانند :«دی بوتانوئیک اسید»

روش های فرآوری

  • اکسید کردن آلدهیدها یا الکلها .
  • ازن کافت آلکن ها.
  • تخمیر که به ویژه در فرآوری استیک اسید به فراوانی به کار گرفته می شود.
  • ...

 کاربردها

  • اسید های آلی ماده ی بسیار برجسته و ارزشمند در بدن جانوران است.
  • چربی ها خود گونه ای از کربوکسیلیک اسیدها هستند.
  • در بسیاری از خوراکی ها ترش مزه اسید آلی می باشد و همچنین سرکه ، آبلیمو و آبغوره کربوکسیلیک اسید هستند.
  • پروتئین ها گونه ای از اسید آلی هستند که آمین اسید(اسید آمینه) گفته می شوند.
  • فرآوری استر که از واکنش اسید آلی با الکل به دست می آید.
  • ساخت شویندهها مانند صابون.
سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 230 تاريخ : يکشنبه 24 آذر 1387 ساعت: 3:46

اسیدهای کربوکسیلیک ، ترکیباتی هستند که دارای عامل -–COOH می‌باشند. ممکن است به هیدروژن ، آلکیل ، آریل ، گروههای اشباع شده ، اشباع نشده استخلاف‌دار یا بدون استخلاف وصل شده باشد.

نام‌گذاری اسیدهای کربوکسیلیک

اسیدهای کربوکسیلی زنجیری از دیرباز شناخته شده‌اند و لذا نام معمولی دارند. نام آنها از ماده یا منبعی که بدست آمده‌اند، گرفته شده است. در نامگذاری معمولی جهت مشخص کردن محل استخلافها از α و β و γ و ... نیز استفاده شده است. در این روش ، اولین کربن متصل به عامل اسیدی α و دومی β و... می‌باشد.


  • CH3COOH: استیک اسید
  • HCOOH: فرمیک اسید
  • PhCOOH: بنزوئیک اسید

نام‌گذاری رسمی

در نامگذاری رسمی ، ابتدا طولانی‌ترین زنجیری را که عامل اسیدی روی آن قرار گرفته ، مشخص نموده و شمارش از طرف عامل اسیدی انجام می‌گیرد. پس از مشخص کردن استخلافهای و محل آنها ، نام زنجیر اصلی را قید و سپس به آخر آن ، پسوند اوئیک (oic) اضافه می‌گردد. اگر زنجیر دارای پیوند دوگانه باشد، ذکر نوع ایزومر هندسی نیز لازم است.

خواص فیزیکی اسیدهای کربوکسیلیک

اسیدهای کربوکسیلیک ، مولکولهای قطبی می‌باشند و می‌توانند مثل الکل‌ها و آمین‌ها ، پیوند هیدروژنی ایجاد نمایند. نقطه جوش اسیدهای کربوکسیلیک حتی از الکلهای هم‌کربن نیز بالاتر است. بعنوان مثال ، نقطه جوش بوتانل و اسید بوتیریک به ترتیب 177,7 درجه سانتی‌گراد و 162درجه سانتی‌گراد می‌باشد. بالا بودن نقطه جوش اسید به پیوند هیدروژنی قوی و تشکیل دی‌مر اسید نسبت داده می‌شود. بالا بودن نقطه ذوب همه اسیدها در نقایسه با الکل‌ها نیز بدین گونه توجیه می‌شود.

اسیدهای یک تا چهار کربنه در آب بخوبی محلوند. اسید پنج کربنه (اسید والریک) نیز تا حدودی در آب حل می‌شود، ولی اسیدهای سنگینتر کم‌محلولند. بدون شک ، محلول بودن اسیدهای کربوکسیلیک کوچک در آب ، بعلت تشکیل پیوند هیدروژنی بین گروه کربوکسیلی و مولکوهای آبکی باشد.

با وجود این ، اسیدهای کربوکسیلیک در حلالهای غیرقطبی مثل اتر ، بنزن و در حلالهای با قطبیت کمتر مانند الکل نیز حل می‌شوند. در طیف سنجی مادون قرمز گروه کربونیل اسیدهای کربوکسیلیک در 1700-1725cm-1 جذب می‌دهند و جذب مربوط به پیوند هیدروژنی در 2500-3500cm-1 ظاهر می‌گردد.

خاصیت اسیدی اسیدهای کربوکسیلیک

اگرچه اسیدهای کربوکسیلیک در مقایسه با اسیدهای معدنی مثل اسید سولفوریک و اسید کلریدریک و اسید نیتریک بسیار ضعیف می‌باشند، ولی در هر صورت ، در مقایسه با الکل‌ها ، آب ، آمونیاک و استیلن‌ها از اسیدیته قوی‌تری برخوردارند.

اسیدیته اسیدهای آلی به ساختمان اسید و طبیعت عوامل و گروههای موجود در روی آلکیل یا آریل بستگی دارد. مثلا تری‌کلرو استیک اسید حدود 103*15 بار قوی‌تر از استیک اسید می‌باشد. این اسیدیته زیاد و قابل ملاحظه به خاصیت الکترون‌گیری هالوژن ، مربوط می‌باشد. بطور کلی ، گروههای گیرنده الکترون ، قدرت اسیدی را افزایش می‌دهند و برعکس گروههای دهنده ، موجب تضعیف اسیدیته می‌گردند.

روشهای صنعتی تهیه اسیدهای کربوکسیلیک

در بین اسیدهای کربوکسیلیک ، از اسید استیک زیاد استفاده می‌شود و این ماده به روش صنعتی و از اکسید شدن آلدئید استیک یا هیدروکربنها و یا از واکنش متانل با منوکسید کربن در حضور کاتالیزور (رودیم- ید) بدست می‌آید. بخش عمده اسید استیک که بعنوان سرکه (محلول رقیق اسید استیک در آب) مصرف می‌شود، از اکسید شدن اتانول بوسیله آنزیم‌ها در شرایط هوازی (در حضور اکسیژن) تهیه می‌شود.

یکی از منابع مهم تهیه اسیدهای کربوکسیلیک ، منابع گیاهی و حیوانی می‌باشد. از استرهای بدست آمده از منابع ذکر شده ، اسیدهای 6 تا 18 کربنی و با درجه خلوص بالا بدست می‌آید. برای تهیه اسیدهای آروماتیک مانند اسید بنزوئیک و یا اسید فتالیک در مقیاس صنعتی ، از روش اکسید شدن استفاده می‌شود.

در این روش ، تولوئن و گزیلن تولید شده از واکنشهای Reforming بوسیله اکسید کننده‌های مناسب اکسید می‌شود. اکسید کردن آلکیل بنزن ، مشکل‌تر از اکسید کردن اولفین‌ها می‌باشد و لذا فرایند اکسید کردن با استفاده از حرارت انجام داده می‌شود. آلکیل بنزن‌ها از طریق هالوژن دار شدن و هیدرولیز هم به اسید مربوط تبدیل می‌شوند.

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 281 تاريخ : يکشنبه 24 آذر 1387 ساعت: 3:43

  توليد كنندة رنگ
منابع ازمون کارشناسی ارشد عمران
دکتری پیام نور
ثبت نام کارت سوخت گازوئیل
سوالات پیام نور
سريال امپراتور دريا
نمونه سوالات آزمون تامین اجتماعی
خرید آموزش زبان Rosetta Stone در مشهد
ويلاي پيش ساخته
گوشی مخصوص جوانان محصول نوکیا
طرح توجیهی راه اندازی ISP
کد رهگیری ثبت نام خانه 90 ساله
ماسک صورت
دستگاه تولید بلوک فومی
افتادگی ...
"اعطای نمایندگی"
شوکر
كارخانه ضايعات كارتن
نمونه سوالات فراگیر پیام نور
كارت شارز مجاني ايرانسل
"wireless camera"+فروش
شركت سامان صنعت + ظروف گياهي
ره گیری کارت سوخت موتور
سلاح دفاع شخصی
هدايا
دانلود کار آفرینی ماکارونی
دستگاه پلاستیک بادی
کار یابی کرمانشاه
دفاع شخصي
ثبت نام كارت سوخت موتور
  آزمون دکتری پیام نور 1387
بالابر
فروش جارو برقی صنعتی
فروش سندبلاست تبريز
بانک جامع مقالات مدیریت
امکانات ویلایی پیش ساخته
ره گیری کارت سوخت موتورسیکلت
سایت خودروهای گازوئیلی
دستگاه شيشه شوي
download"نرم افزار فرهنگ دارويي حكيم"
ماشینها و تجهیزات معدنی
مغناطیس درمانی
teacher book interchange دانلود
قيمت فروش درب پنجره upvc
کیت آموزشی ربات
جدداً
ساخت +سفال +سقف
قيمت پژوپارس
ثبت نام کارت سوخت دیزلی
dfd بنگاه املاک
کلینیک زیبایی پوست در تهران +گونه گذاری
کلیه دانلود نرم افزارها رایگان
کیت دوسیم کارته کردن موبایل
منابع درسی کنکور ارشد
خانم قربانی+زبان انگلیسی
رهگیری کارت سوخت مور تور سیکلت
استخدام منشی در اصفهان
سوالات آزمون سراسری سال85
زمینهای مسکن مهر در زنجان
.سخنان بزرگان
 رهگیری کارت سوخت
دانلود رايگان استاندارد فولاد
موادشیمیایی
نرم افزار ocr رایگان
سویا
سوالات +کامپیوتر +رایانه +هنرستان
کشف گزینه در کنکور
نمونه سئوالات
IELTS در ارمنستان
فروش آپارتمان در اصفهان
مدل مانتو
استخدام در بانک
خرید روش نوین تست زنی برای کارشناسی 9000
فروش سیلیس
موبایل p111
پست cod چیست
فراگير چارت آموزشي
آزمايش هاي بتن
چهره آرایی
نمونه سئوال پیام نور
جزوه سیالات عمران
كارافريني
موتور برق بنزيني
نمونه سوالات دانشگاه پيام نور
یخچال فریزر فیلور
گیربکس پژو 206
چاپ روی چینی
دوش حمام
لاستیک پا فابریک ریو
سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 290 تاريخ : جمعه 22 آذر 1387 ساعت: 20:17

مقدمه:
انقلاب سبز در طب:
در مورد آسپيرين، بازگو كردن داستان آن، به‌عنوان نمونه‌اي از تكامل مناسبات بين طب گياهي سنتي و داروشناسي جديد، بي‌فايده نيست.منشا اين دارو را بايد در پوست درخت بيد جستجو كرد، كه درختي از خانواده salix است و معمولاً در مناطق پر‌‌آب مي‌رويد. و تنها هنگامي واقعا شاداب است كه پايه آن در آب باشد. بنابر نظريه عوام، اين به‌معناي آن‌ است كه بيد سرما نمي‌خورد، و به‌همين دليل بايد به كار درمان سرماخوردگي‌هاي همراه با تب، دردهاي مفصلي، و ناراحتي‌هاي مشابه بخورد. و از آنجا كه اين، پوست درخت بيد است كه آن‌را در بر گرفته و گرم نگه مي‌دارد پس خاصيت مورد نظر را بايد در پوست بيد جستجو كرد. در قرن هجدهم، متوجه شدند كه پوست بيد، از لحاظ تلخي شبيه به پوست درختي در پرو به نام «سينكونا» است كه از آن گنه‌گنه مي‌‌‌گرفتند و اين دارو عالي‌ترين وسيله درمان بيماري تب‌آور مالاريا به حساب مي‌آمد. به‌اين‌ ترتيب، جوشانده پوست بيد را براي درمان تب مورد استفاده قرار دادند. در سال 1829 ، «لرو» از فرانسه، موفق شد از پوست بيد ماده‌اي به دست آورد كه خود، آن را «ساليسين» (مشتق از اسم لاتيني اين درخت) ناميد. ديري نگذشت كه داروسازي سوئيسي به نام«پاگن ستشر» از راه تقطير گل اسپيره كوهي (كه گياهي است از خانواده spiraea و آن هم دوست دارد كه پايه‌اش درون آب باشد)‌ ماده‌يي به دست آورد با نام شيميايي «ساليسيلات متيل» كه بسيار شبيه به ساليسين بود. دنباله اين ماجرا به آلمان مي‌‌كشد كه درآنجا، چند سال بعد، ماده مشابه ديگري به نام «اسيد ساليسيليك» براي نخستين بار به‌طور مصنوعي تهيه شد. از اين ماده نيز مشتق ديگري به نام«اسيد استيل ساليسيليك» به دست آمد كه (ضمن اين‌كه كلمه salix كه همان بيد باشد در اسم آن انعكاس يافته) چيزي نيست جز اسم رسمي آسپيرين كه داروي رايج ضد درد است و هجاي «spir»‌ در آن، يادآور منشا گياهي ديگر آن، يعني اسپيره كوهي است.جريانات مشابه اين، منجر به پيدايش تعداد زيادي از داروهاي جديد شده است كه منشا آنها را بايد در گياهاني كه از ديرباز بر بشر شناخته شده بوده‌اند جستجو كرد. به‌عنوان مثال، «افدرين» كه در معالجه آسم به كار مي‌رود از علف «افدرا» به دست مي‌آيد، كه دست كم از 5 هزار سال پيش در طب چين مورد استفاده است. نام گياهان ضد درد پرقدرتي چون سيكران، مهرگياه، ترياك و انقوزه، در قديمي‌ترين رساله‌هاي داروسازي بابل و سومر آمده است.در واقع، قابليت برطرف كردن درد، شايد نخستين پيروزي بزرگ طب بود كه خيلي پيشتر از قابليت طب به درمان بيماري‌ها پديد آمد. در مصر باستان داروهاي مسكن وجود داشت، و در «تب» در حدود سال 1600 (ق.م) رساله طبي نگاشته شد كه حاوي فهرستي بود از هفتصد گياه، از آن جمله گياهان ملين مثل سنا و كرچك، و گياهاني از قبيل گياهان خانواده seilla كه در ناراحتي‌هاي قلبي مورد استفاده‌اند. اين، طب يونان بود كه تحت تاثير طبيباني چون بقرات و ديوسكوريد، ارزش‌درمان كنندگي گياهان طبي را ـ‌جدا از اهميتي كه اين گياهان از لحاظ شعائر و سحر و جادو، براي انسانهاي گذشته داشتند‌‌ـ‌ تثبيت كرد. اما پس از سقوط امپراطوري روم، سحر و جادو مجدداً مسلط شد، و شناخت و مطالعه گياهان طبي مامن خود را در ديرها و صومعه‌ها حست و دانش پزشكي به دست محققان عرب شكوفا شد. ما اكنون مي‌دانيم كه برخي عارضه‌هايي كه در آثار محققان قرون وسطي ذكر شده ـ‌‌مانند نوعي التهاب پوستي كه به «آتش سن‌آنتوان» موسوم است‌ـ ناشي از قارچ‌ِ ريزي است كه به جان غلات مي‌افتد و وقتي عده زيادي از مردم،‌ نان حاصل از اين غله آلوده را مي‌خورند به مسموميت دسته‌جمعي و نيز وهم‌زدگي ـ‌كه در قرون وسطي آن را ناشي از عمل شيطان مي‌دانستند‌ـ دچار مي‌شوند. اما تا قرن هجدهم ـ‌ارجوت كه همان قارچ مورد بحث باشد‌ـ شناخته نشد. جالب است بدانيم كه امروزه ارجوت را در تهيه تعداد زيادي از داروهاي مخصوص معالجه فشار خون و اختلالات خوني ديگر، مورد استفاده قرار مي‌دهند.كشف امريكا توسط سياحان اروپايي و پيدا شدن راه دريايي به هندوستان، انواع جديدي از گياهان را بر آن‌چه كه از دوران باستان شناخته شده بود افزود و باعث غناي هر چه بيشتر فهرست عظيم گياهاني شد كه در طب جديد مورد استفاده‌اند. قرن نوزدهم، نشانگر فصل جديدي در شيوه استفاده از گياهان طبي و به منزله دوره گذرا از شيوه استفاده از گياهان يا معجون‌هاي حاصل از آنها براي مصارف درماني، به شيوه استفاده از مولكولهاي فعال موجود در آنهاست. اين در واقع دوره‌اي است كه طي آن،‌ جهان‌بيني زاياي جوامع نوپاي صنعتي، آغاز به واژگون كردن تصور سنتي از طبيعت مي‌كند. اكنون ديگر طبيعت در نظر آنها چيزي نيست، مگر منبع عظيمي از مواد خام سهل‌الوصول. منابع طبيعي براي بهره‌برداري ساخته شده‌اند و انسان جديد در واقع گاهي بيش از اندازه از آنها بهره‌برداري مي‌كند. دنياي گياهان كه زماني مركب از «شخصيت‌ها»ي فردي گياهان بود، اكنون تنها به منزله معدني تلقي مي‌شود كه تنها وظيفه آن قراردادن مواد خود در اختيار انسان است. با اين همه بايد گفت كه در بسياري از موارد، اين تلقي جديد نسبت به گياهان مزايايي دارد. مثلاً وقتي‌كه مي‌توان از چغندر، ابتدا قند تهيه كرد و سپس به مصرف رساند، هيچ‌كس حتي فكر آن را هم نمي‌كند كه براي شيرين كردن چاي خود، تكه‌اي چغندر در آن بيندازد!با پيش‌رفتن اين جريان، زماني مي‌رسد كه شيمي‌دانان يك ماده فعال معين را مصنوعاً تهيه مي‌كنند، و در آن هنگام ديگر به گياهي كه اين ماده را در اصل از آن تهيه مي‌كردند نيازي نيست. در مرحله بعدي، يعني زماني كه از يك محصول مصنوعي، يك رشته مشتقات گرفته شد و پس از آزمايش به روي حيوانات،‌ به فهرست دايم‌التزايد داروهاي شيميايي افزوده مي‌شود، آن‌گاه ديگر هيچ‌كس به خاطر نمي‌آورد كه روزي روزگاري گياهي بود، كه همين اثرات درماني را ايجاد مي‌كرد. چه كسي امروز به خاطر مي‌آورد كه «آمفتامين»ها كه به عنوان محرك در درمان افسردگي مورد استفاده‌اند، صرفاً اعقاب مصنوعي ماده‌اي طبيعي هستند كه از گياه «افدرا» به دست مي‌آمد؟به اين ترتيب قفسه داروخانه‌هاي امروز، پر است از محصولات مصنوعي كه سر‌منشا بسياري از آنها را بايد در موارد موجود در گياهان طبي جست. انسان به صورتي دم‌افزون مولكولهايي مصنوعي ايجاد مي‌كند كه در دنياي طبيعت نظيري ندارد. و سپس از اين مولكولها موادي را براي مصارف درماني تهيه مي‌كند. اين تركيبات مصنوعي كه هر روز به مقدار بيشتر و بيشتري و براي مصارف گوناگون تهيه مي‌شوند، باعث ايجاد پديده‌اي مي‌گردند كه مي‌توان آن را «آلودگي دارويي» ناميد. با عوارض جدي ناشي از مصرف روزانه مقدار فراواني دارو توسط مردمي كه في‌الواقع بيمار نيستند: داروهاي محرك، داروهاي مسكن، انواع داروهاي اعصاب، قرص‌هاي ضد حاملگي و غيره. تمام اين داروهاي آرام‌بخش كه به مقدار فراوان مورد مصرف تعداد زيادي از افرادِ اساساً تندرست قرار مي‌گيرند، كه به اعتقاد خود،‌ با مصرف اين داروها وضع و حالشان بهتر مي‌شود. واين جز خيالي باطل نيست، چراكه هيچ تضميني نيست كه اثر اين داروها، در درازمدت به نفع شخص باشد.اين است كه عده زيادي از خود مي‌پرسند كه اگر توسعه افسارگسيخته صنعتيِ مبتني بر توليد و مصرف مقادير دم‌افزوني از كالاها ادامه پيدا كند، چه پيش‌خواهد آمد؟اكنون بسياري خواهان آنند كه پژوهش‌هايي در زمينه ابداع شيوه‌هاي درماني ملايم‌تر و نرم‌تر كه براي بدن انسان عوارض كمتري داشته باشد انجام گيرد و همراه با آن، توليد و مصرف گياهان طبي در سطح جهان افزايش چشمگير يابد. اما پيش از بريدن از افراط‌كاري‌هاي تمدن شيمي‌زده‌مان و ابداع يا احياي روش‌هاي درماني‌ايي كه مناسبات انسان و محيط زيستش را بر پايه بهتري قرار دهد، معقول آن است كه يك بار براي هميشه، رابطه بين پزشكي علمي و طب سنتي اطبا و حكيمان را روشن سازيم. ‌چراكه اين شبيه رابطه زن و شوهري است كه از زندگي با يكديگر خسته شده‌اند، اما در عين حال توانايي تنها زيستن را ندارند! آنچه به سرعت لازم است انجام گيرد، آشتي بين اين دو است. و اين چيزي است كه در پژوهشي كه از سوي «سازمان جهاني بهداشت» به عمل مي‌‌آمد، مد نظر قرارگرفت. اين سازمان از كشورهاي عضو خواست كه فهرست كاملاً تازه‌اي از منابع درماني خود، كه گياهان طبي در آن، هنوز جاي مهمي دارند، تهيه كنند.بدون ترديد چنين تحقيقاتي منجر به كشف داروهاي جديد، و ايجاد و تكامل نظريات جديد نسبت به درمان بيماري خواهد شد. نيازي به توضيح نيست كه خردمندي و حس عميق تجربه‌گرايي پيشينيان، غالباً منجر به آن مي‌شد كه علي‌رغم سكونت در قاره‌هاي مختلف،‌ براي معالجه فلان عارضه، از داروي طبيعي يكساني استفاده كنند. چنان‌‌كه ساكنان منطقه حاره، براي چاره كردن بيماري جذام، از مواد حاصل از خانواده نباتيِ يكساني به نام «فلاكورتاسئا» استفاده مي‌كرده‌اند. به عبارت ديگر معالجه‌گراني كه هزاران كيلومتر دور از يكديگر مي‌زيستند، بدون آن‌كه از وجود ديگري خبر داشته باشند، از گياهان مشابهي كه گياه‌شناسان امروزي در يك طبقه جاي مي‌دهند، داروهاي يكساني تهيه مي‌كردند. به عنوان مثال هم «اينكا»ها و هم چيني‌ها، متوجه شده بودند كه زنبق آبي براي تسكين درد و نقصان قوه باء خاصيت دارد.برخورد به چنين تشابهاتي توجه انسان را به سودمندي داروهايي كه در زمانهاي مختلف توسط جوامع مختلف كشف شده‌اند جلب مي‌كند. امروزه تعدادي از كشورها متابع قابل توجهي را صرف ارزيابي مجدد و بررسي علمي سنتهاي درماني خود مي‌كنند. انجام اقداماتي از اين قبيل در سراسر جهان، نه تنها باعث غناي ميراث فرهنگي هر يك از ملتها و جوامع و تمدنها خواهد شد، بلكه همچنين، منابع بيشتري را در اختيار طب جديد خواهد گذاشت. با اين همه چنين پيشرفتي مستلزم برخوردي كاملاً نو به گياهان طبي است. پس از ده‌ها سال پژوهش‌هاي تحليلي به منظور استخراج مواد خاص فعال موجود در گياهان، اكنون بايد تاكيد را در بهره‌برداري از كل گياه قرار داد. از اين لحاظ برخي از اطلاعات كاملاً جديد بوم‌شناختي (اكولوژيك) ممكن است به كار آيد. براي يك بوم شناس (اكولوژيست) يك معلول معين، به هيچ‌وجه محصول يك علت واحد نيست، بلكه حاصل برخورد يك رشته پديده‌هاي هم‌زمان است. بنابراين در يك نظام پيچيده، كل آن نظام از حاصل جمع اجزاي آن فراتر است و درك اولي تنها با شناخت دومي به دست نمي‌آيد. كار كردن ماشين طبيعت حاصل جمع عمل اجزاي آن كه به طور هم‌زمان و در كنار يكديگر باشند نيست، بلكه برآيند كنشهاي متقابل فراوان بين آنها است. درست به همان‌گونه كه ماده و حيات، با فراگذشتن از درجه معيني از پيچيدگي، خواص نويني كسب مي‌كنند. حال اگر گياهان طبي را در نظر گيريم، نظريه فوق به طريق استقرايي، نظريه‌هاي سنتي را كه مطابق آنها يك گياه در تماميت خود واجد خواصي است كه از خواص اجزاي متشكله آن متفاوت است، تاييد مي‌كند. نمونه‌هايي كه بيش از همه در تاييد اين نظر ذكر مي‌شود، خواص كلي ارجوت، ترياك يا ديژيتال است كه با خواص تك تك مواد موجود در آنها آشكارا متفاوت است. اما اين نمونه‌ها آن‌چنان منجز هم نيستند، چه با اندكي توجه به منطق دكارتي، روشن مي‌شود كه خواص يك مخلوط عبارت است از جمع جبري خواص مواد تشكيل دهنده آن. حال آنكه آزمايش با انگنار، در اين مورد نتايج بهتري به دست مي‌دهد. بنا بر نظريه علايم، با مصرف اين گياه تلخ‌مزه، عمل كبد بايد بهتر انجام گيرد، و در واقع چنين نيز هست. در ابتدا خاصيت مورد بحث به يك ماده واحد موجود در اين گياه نسبت داده مي‌شد، و سپس كشف شد كه مواد ديگري نيز در اين قضيه سهم دارند. با اين حال وقتي كه اين مواد به طور جداگانه بر روي موش آزمايش شد، معلوم شد كه اكثر آنها به صورت تنها كاملا بي‌اثر هستند. از سوي ديگر، آزمايش مخلوط اين مواد، به مقدار مساوي نشان داد كه هر چه تعداد مواد در مخلوط بيشتر باشد، اثر آنها قاطع‌تر است. به عبارت ديگر اين امر به خوبي نشان مي‌دهد كه چگونه با امتزاج موادي كه به صورت تنها بي‌اثرند، خواص فعال جديدي بروز مي‌كند. بدون شك چنين پديده‌اي در مورد ساير گياهان، مثل خفچه و سنبل‌الطيب نيز صادق است. هرچند كه ماهيت دقيق اجزاي متشكلة آنها هنوز به درستي تعيين نشده است. درست به همان‌گونه كه نفع عمومي چيزي متفاوت از حاصل‌جمع منافع فردي افراد جامعه است، خواص يك داروي معين نيز از حاصل جمع خواص تمام مواد تشكيل‌دهنده آن متفاوت است. اين به آن معنا است كه لازم است برخورد كاملاًجديدي نسيت به مطالعه گياهان طبي پديد آيد و نيز داروشناسي خاص، آن‌چنان پيش برود كه تمام ماهيت و خواص آنها به نحو مقنع‌تري دانسته شود.چنين است كه به عنوان مثال، مطالعات پروفسور ماسكليه از دانشگاه بوردو، درباره كف يك جنگل كاج، منجر به كشف داروي مهمي شد كه در معالجه اختلالات دستگاه گردش خون به كار مي‌رود. ماسكليه با دريافتن اين نكته كه در كف چنين جنگل‌هايي سبزه نمي‌رويد به اين فكر افتاد كه شايد، علت آن باشد كه سوزن‌برگ‌هاي مرده كاج، محتوي ماده‌اي است كه از جوانه‌زدن دانه‌هاي سبزه جلوگيري مي‌كند. آزمايشهايي كه به روي جوشانده سوزن‌برگ‌هاي مرده انجام شد، نشان داد كه چنين چيزي واقعاً وجود دارد و اثر آن بسيار قوي است. پروفسور ماسكليه توانست آن ماده را استخراج كرده و مورد آزمايش قرار دهد، كه در نتيجه آن معلوم شد كه اين ماده داراي اثر بسيار نيرومندي است كه فعل و انفعالات هورموني حاكم بر طويل شدن و تقسيم سلول‌هاي سبزه را مختل مي‌كند. همچنين معلوم شد كه همين ماده از رشد جنبه‌هاي مضر در سلول‌هاي انسان جلوگيري مي‌كند. به هر حال هنگامي كه براي توليد آن از طريق مصنوعي كوشش به عمل آمد، معلوم شد كه تنها پلي‌مرها واجد چنين خاصيتي هستند، (پلي‌مرها موادي مركب از مولكول‌هاي بسيار بزرگند كه از تركيب واحدهاي شيميايي ساده‌تر به نام مونومر حاصل مي‌شوند). و اما هنگامي كه اين مواد را به ديمرها تجزيه كردند‌ (ديمر حاصل تركيب دو مولكول است) معلوم شد كه تحت تاثير آنها، مقاومت مويرگ‌هاي خوني افزايش مي‌يابد و نتيجتاً سيستم قلب و عروق تقويت مي‌شود. به اين ترتيب مطالعه علت عدم رشد سبزه در جنگل كاج، همراه با جستجوي تركيبات درماني جديد، ‌منجر به كشف درمان جديدي براي بيماري‌هاي دستگاه گردش خون با استفاده از ماده موجود در سوزن‌برگ‌هاي كاج شد. اين قضيه نشان مي‌دهد كه چگونه پژوهش‌هاي علمي،‌ براي رسيدن به نتايج مثبت، گاهي بايد از راه‌هاي كاملاً بديع و پرپيچ و خم بگذرد. جرياناتي ساده‌تر از اين هم هست و آن، آزمايش‌هايي است كه به منظور يافتن خواص گياهان به طور منظم به روي آنها انجام مي‌گيرد. همه ساله‌ چنين آزمايش‌هايي در آزمايشگاه‌هاي موسسات صنعتي و دانشگاهي در مورد هزاران نوع گياه، توسط محققان داروهاي گياهي در چهار‌گوشه جهان صورت مي‌گيرد.امور طبيعت علي‌ رغم ظواهر آن از نظم برخوردار است و فراگردهاي شيميايي گياهان نيز به هيچ‌وجه بي‌حساب نيست. در ميان گياهان يك «روح خانوادگي» موجود است و هر خانواده‌اي نوع خاصي از فعل و انفعالات شيميايي را به بار مي‌آورد، درست به همان‌گونه كه نوع خاصي از گل را به‌وجود مي‌آورد.به هر حال، صرف‌نظر از هر مسيري كه در پژوهش‌ها اتخاذ شود، در سراسر دنيا نسبت به مطالعه گياهان دارويي اقبال جديدي ديده مي‌شود و نشانه‌هاي اميدواركننده‌‌اي دال بر توجه كشورهاي در حال توسعه به داروهاي سنتي خود به چشم مي‌خورد. اين كشورها به تشويق سازمان جهاني بهداشت مبني بر اين‌كه احتياجات درماني مردم خود را از منابع خود تامين كنند و با استفاده از مكاتب طب سنتي، تمدن خود از اتكا به واردات سنگين داروهاي خارجي ـ‌‌كه برتري آنها نيز همواره قطعي نيست‌ـ بكاهند به اين سو روي آورده‌اند. امروزه نيز همچون گذشته،‌ دنياي گياهان طبي دنياي وسيعي است كه افق‌هاي دوردستي را در برابر پژوهش‌ها و پيشرفت‌هاي پزشكي گسترده است.
آسپرين داروی معجزه آسا:
چند رشته مطالعات تازه نشان می دهد که آسپيرين می تواند در برابر سرطان دهان، حلق و مری و همچنين روده از بدن محافظت کند.از يک سو محققان ايتاليايی می گويند که مصرف مرتب آسپيرين برای مدت پنج سال خطر ابتلا به سرطان دهان، حلق و مری را به ميزان دو سوم کاهش می دهد و دو گروه ديگر در آمريکا از تاثير مثبت آسپيرين در پيشگيری از سرطان روده خبر می دهند.اين يافته ها بر شواهد قبلی که نشان می دهد آسپيرين يک داروی معجزه آساست می افزايد.مطالعات قبلی نشان داده است که اين قرص، که بيش از يک قرن پيش ساخته شد، می تواند به پيشگيری از سرطان ريه کمک کند.اکثر مردم اين دارو را برای تسکين درد به کار می برند، اما استفاده از آن برای حفاظت در برابر بيماری های قلبی و حتی آرتروز نيز رايج است. 

تاريخچه:
وقتى نخستين بار در سال 1763 از پودر پوست درخت بيد براى تسكين بيمارى كه از تب رنج مى برد استفاده كردند كسى فكرش را نمى كرد كه سال ها بعد دارويى را از آن كشف كنند كه جان ميليون ها نفر را از خطر مرگ نجات دهد. در آن سال يك كشيش انگليسي به نام ادوارد استون مقاله‌اي در جلسه سلطنتي انگلستان ارائه دادكه در آن استفاده از برگ درخت بيد را حتي در درمان مالاريا نيز موثر معرفي كرده بود. 100 سال پس از مقاله استون، يك پزشك اسكاتلندي دريافت كه با استفاده از ماده‌اي كه از برگ درخت بيد بدست مي‌آيد، عوارض ناشي از رماتيسم به طرز معجزه آسايي كاهش مي‌يابد.
آسپيرين را چه كسي كشف كرد؟
فردريک باير (Fredrich Bayer) در سال 1825 بدنيا آمد. پدر او يک نساج و رنگرز پارچه بود و طبق عادت آن زمان وی در ابتدا شغل و حرفه پدر را برای کار انتخاب کرد و پس از مدتی فعاليت با پدر، در سال 1848 تشکيلاتی مشابه برای خود راه اندازی کرد و در آن حرفه بسيار هم موفق شد.
تا قبل از 1856 برای رنگرزی از مواد رنگی طبيعی استفاده می شد اما با کشف و صنعتی شدن ساخت رنگهای حاصل از مواد نفتی، باير که پتانسيل موجود در اين کشف را بخوبی احساس کرده بود با کمک شخصی بنام فردريک وسکوت (Friedrich Weskott) کمپانی Bayer را راه اندازی کرد.
باير در ماه می سال 1880 در گذشت و تا آن زمان کمپانی هنوز در فعاليت رنگرزی مشغول بود، اما شرکت تصميم گرفت با استخدام تعدادی شيميدان نوآوری هايی در اين صنعت بوجود آورد و اين اتفاق هم افتاد اما نه در صنعت رنگرزی.
هنگامی که فليکس هوفمن (Felix Hoffmann) در حال انجام آزمايش با يکسری از ضايعات رنگی بود تا شايد بتواند دارويی برای درمان درد ناشی از بيماری پدرش بدست آورد توانست به پودری دسترسی پيدا کند که امروزه شما آنرا به نام آسپرين می شناسيد.
هوفمن آسپرین را کشف نکرد:
آسپرين چهل سال قبل توسط يک شيميدان فرانسوی کشف شده بود، اين شيميدان بخوبی می دانست که پودر اسيد استيل ساليسيليک (acetylsalicylic acid) دارای خاصيت شفا بخشی بسيار می باشد. در واقع بيش از 3500 سال بود که بشر اين پودر را می شناخت چرا که در سال 1800 يک باستان شناس آلمانی که در مصر تحقيق می کرد، با ترجمه يکی از پاپيروس های مصری متوجه شد که بيش از 877 نوع مواد دارويی برای مصارف مختلف در مصر باستان شناخته شده بود که يکی از آنها همين پودر اسيد بود که برای برطرف کردن درد از آن استفاده می شد.
در برخی از شواهد و نوشته های ديگری که در يونان بدست آمده است نيز مشخص شده که بشر حدود 400 سال پيش از ميلاد از شيره پوست درخت بيد برای درمان تب و درد استفاده می کرده است. همچنين آنها هنگام زايمان زنان از اين ماده برای کاهش درد استفاده می کردند. امروزه مشخص شده که ماده موجود در اين شيره چيزی جز اسيد ساليسيليک نيست.
ثبت رسمی کشف آسپرین:
ماه مارچ 1899 کمپانی باير رسما" محصول خود بنام آسپرين را به ثبت رساند و به دنبال آن در ساير کشورهای جهان نيز تحقيقاتی گسترده راجع به اين دارو انجام گرفت بگونه ای که هنگام بازنشستگی هوفمن در سال 1928، آسپرين در تمام دنيا شناخته شده بود.
سپس شيمي‌دانان آلي بر آن شدند كه اين ماده را شناسايي و جداسازي كنند. و پس از تلاش فراوان يك كربوكسيليك اسيد همراه با يك عامل فنلي را شناسايي كردند و به مناسبت منبع آن كه درخت بيد يا سايدكس بوده آن را ساليسيليك اسيد ناميدند كه فرمول آن مطابق زير است:

سنتز استيل ساليسيليک اسيد (آسپرين) :

بوسيله استيله کردن عامل OH در ساليسيليک اسيد براحتی ميتوان آسپرين تهيه کرد. اين کار به روشهای متفاوتی امکان پذير است. يکی از اين روشها استفاده از استيک انيدريد در محيط اسيدی مي باشد که با توجه
به نقش کاتاليستی اسيد معمولا در حضور استيک اسيد يا سولفوريک اسيد انجام مي شود.
روش مورد بحث ديگر استفاده از استيل کلريد در حضور پيريدين می باشد.
بخش عملی :
الف) سنتز آسپرين با استفاده از استيک انيدريد:

در يک ارلن 250 ميلی ليتری 2.5 گرم ساليسيليک اسيد را با 3.5ميلی ليتر استيک انيدريد مخلوط کنيد و 3-2قطره سولفوريک اسيد غليظ به آن اضافه کنيد. مخلوط واکنش را ضمن هم زدن در يک حمام آب به مدت 15 دقيقه در دمای 60 درجه سانتيگراد حرارت دهيد. آن را سرد کرده و در يک بشر حاوی 38 ميلی ليتر آب سرد همراه با هم زدن بريزيد. رسوب را با کمک قيف بوخنر صاف کرده و با آب سرد بشوييد. پس از خشک کردن راندمان و نقطه ذوب را تعيين کنيد.
برای خالص سازی کامل می توان بر روی محصول در حلال بنزن تبلور مجدد انجام داد. برای اين کار آب حلال مناسبی نمی باشد.هم چنين مي توانيم به منظور خالص سازي آسپيرين 7.5ميلي ليتر اتانول را با 17 ميلي ليتر آب مخلوط ودر حمام آب گرم حرارت دهيم تا دماي آن به 65 درجه برسد.سپس آسپيرين ناخالصي را كه تهيه كرده ايم به اين مخلوط اضافه مي كنيم و آن را حل مي كنيم.محلول را سرد كرده تا بلورهاي جديد تشكيل شود و با قيف بوخنر آن را صاف مي كنيم. پس از تبلور مجدد راندمان و نقطه ذوب را محاسبه نموده و با مرحله قبل مقايسه کنيد.
نكته1: ريختن آب براي تبديل انيدريك استيك به استيك اسيد انجام مي شود و به اين ترتيب بلور حاصل مي شود.توجه به اين نكته لازم است كه اسيد ساليسيليك در اسيد استيك حل مي شود بنابراين تغييري قابل مشاهده اي تا قبل از ريختن آب انجام نمي شود.به اين ترتيب ريختن آب و توليد استيك اسيد كه آسپيرين در آن حل نمي شود موجب تشكيل بلور خواهد شدو آسپيرين ناخالص رويت مي شود.
نكته2: براي اطمينان از اينكه واكنش بين مواد موجود در ارلن انجام شده است مي توانيم از FeCL3 استفاده كنيم.در صورتيكه واكنش بين محتويات ارلن انجام شده باشد با اضافه كردن اين ماده رنگي مشاهده نمي شود ولي اگر واكنش انجام نشده باشد پس از افزودن اين ماده كمپلكس بنفش رنگي مشاهده خواهد شد. علت اصلي اين موضوع از بين رفتن گروه OHدر ماده اوليه است.

ب) سنتز آسپرين با استفاده از استيل کلريد:

در يک ارلن 250 ميلی ليتری 6 گرم ساليسيليک اسيد را در 5 ميلی ليتر پيريدين حل کنيد. ارلن را در حمام يخ بگذاريد و 5 ميلی ليتر استيل کلريد را از داخل يک قيف جدا کننده قطره قطره و همراه با بهم زدن شديد به محلول داخل ارلن اضافه کنيد. پس از اتمام افزايش، مخلوط واکنش را در يک حمام آب به مدت 5 دقيقه گرم کنيد و سپس سرد نمائيد. هنگام سرد کردن يک جسم نيمه جامدی تشکيل می گردد که حدود 60 ميلی ليتر آب سرد و چند تکه يخ به آن اضافه کنيدو مخلوط را به هم بزنيد. کريستالهارا با قيف بوخنرصاف کرده و با آب سرد بشوييدو سپس خشك كنيد و نقطه ذوب و راندمان را محاسبه كرده و به روش قبلي خالص كنيد.

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 241 تاريخ : پنجشنبه 21 آذر 1387 ساعت: 13:35

 

نگاه کلی: 
آب طبیعی به علت خاصیت حل کنندگی خوبی که دارد معمولا دارای حجم بالایی از نمکهای محلول در آب می‌شود. CO2 هوا به خاطر انحلال در آب و تولید اسید کربنیک ضعیف ، خاصیت خورندگی آب را بهبود می‌بخشد. بنابراین آب هنگام عبور از محیط‌های گوناگون مخصوصا محیط‌های آهکی مقداری از کربناتها را در خود حل می‌کند که این کربناتها همراه یونهایی مثل کلسیم ، منیزیم و … باعث ایجاد سختی موقت می‌شود که با جوشاندن از بین می‌رود. البته یونهای منیزیم و کلسیم و سایر یونهای فلزی با سولفات و نیترات و کلرو ایجاد سختی دائم می‌کنند. سختی آب باعث رسوب کردن صابون در آب می‌شود (خاصیت کف کنندگی صابون را از بین می‌برد)

اثرات زیانبخش ناخا لصیهای آب در صنعت :
آب در شیمی یکی از مهمترین حلالها می‌باشد و معمولا از آن به عنوان حلال عمومی نام می‌برند و بنابراین کاربرد اساسی در صنعت دارد که برخی از کاربردهای مهم به این شرح می‌باشد:

  • به عنوان حلال
  • به عنوان ماده اولیه برای شرکت در واکنشهای شیمیایی تهیه محصول
  • به عنوان ماده واسطه برای خارج کردن مواد ناخواسته
  • به عنوان بستر یا محیط واکنش

وجود ناخالصیها در آب باعث ایجاد رسوب در دستگاههای حرارتی و دیگ بخار می‌شود که این عمل باعث کاهش عمر مفید دستگاه می‌گردد. بخاری که از آبهای ناخالص تولید می‌شود دارای کیفیت بسیار پایینی می‌باشد به عنوان مثال سیلیس همراه بخار خارج شده و در اثر سرد شدن روی پره‌های توربین رسوب می‌کند. خوردگی بویلرها و تأسیسات حرارتی و لوله‌ها ، اتلاف مواد شیمیایی و باقی گذاشتن لکه روی محصولات غذایی و نساجی از عوارض دیگر آبهای ناخالص می‌باشد.

بهترین آب برای استفاده در صنعت آب بدون یون است اما هزینه تولید آب بدون یون بسیار بالاست. بنابراین در اکثر آزمایشگاهها و واحدهای صنعتی از آب مقطر استفاده می‌کنند همچنین در مناطق کویری و خشک که منابع آب آشامیدنی محدود می‌باشد. از روش تقطیر آب دریا برای تولید آب آشامیدنی استفاده می‌شود.

روش تقطیر آب
تقطیر یک محصول و خالص سازی آن به فراریت اجزای آن محلول یعنی اختلاف نقاط جوش آنها بستگی دارد. آب طبیعی از دو جزء حلال (آب) و مواد حل شده (انواع نمکها) تشکیل شده است. آب جزء فرار می‌باشد. در اثر حرارت آب بخار می‌شود و نمکهای موجود در آن در ظرف تقطیر به صورت رسوب باقی می‌ماند. اگر بخار آب حاصل را سرد کنیم بخار به مایع تبدیل شده و آب مقطر به دست می‌آید. با تکرار تقطیر می‌توان آب مقطر با خواص بهتری را بدست آورد.

از آب مقطر به دست آمده در آزمایشگاههای شیمی بطور گسترده استفاده می‌شود همچنین آب مقطر استریل شده در تزریقات کاربرد فراوانی دارد. آب مقطر مانند آب آشامیدنی گوارا نمی‌باشد. زیرا مقداری از اکسیژن محلول و همچنین برخی از یونهایی که باعث ایجاد طعم خوب آب می‌شود را از دست داده است. در تاسیسات آب شیرین کن بعد از اینکه آب شور را تقطیر کرده و آب مقطر تولید می‌کنند طی فرآیندهایی که روی آب انجام می‌دهند طعم آن را بهبود بخشیده و برای نوشیدن مناسب می‌سازند.

برخی خواص آب مقطر :
PH آب مقطر خنثی و در حدود 7 می‌باشد. رسانایی ویژه آن (عکس مقاومت) بسیار کم می‌باشد. زیرا رسانایی الکتریکی آب با انحلال نمکها در آن افزایش می‌یابد. دمای جوش آن پایینتر از آبهای طبیعی می‌باشد و به علت عدم وجود مواد محلول خاصیت خورندگی ندارد.

سایت رشته صنایع شیمیایی...
ما را در سایت سایت رشته صنایع شیمیایی دنبال می کنید

برچسب : نویسنده : علیرضا فرزادنیا chemis بازدید : 260 تاريخ : پنجشنبه 21 آذر 1387 ساعت: 13:1

نظر سنجی

سایت صنایع شیمیایی...

خبرنامه